主要内容
一、概述
二、集群安装
三、整合kafka与storm
四、融合kafka、storm与hdfs
五、创建kafka客户端代替kafka-console-producer(未完成,暂时使用其他人发送过来的日志文件)
部分内容转自:http://shiyanjun.cn/archives/934.html
一、概述
(一)机器环境
共4台机器:
nn01 dn01 dn02 dn03 192.168.169.91-94
storm集群:全用,其中nn01为nimbus与ui,其它为supervisor
kafka集群:dn01 dn02 dn03
zk集群:nn01 dn01 dn02
(二)本文主要内容3个示例
1、整合kafka与storm,将kafka中的数据经过kafkaSpout发送到storm中进行处理。
2、整合kafka、storm与hdfs,在上述示例的基础上,使用hdfsBolt将数据写入hdfs。
3、使用kafka客户端从日志文件中读取消息,并发送到kafka,然后继续第2步流程。注:上面2个示例均是使用kafka-console-producer来产生消息的。
说明:
1、事实上,以上3个示例为同一个示例的不同步骤,只是为了方便调试分成不同步骤而已,最终结果即是示例三。因此示例1、2中的部分代码不规范,均在示例3均作了完善。
2、在正式使用代码时,只需要完成集群安装及相应的示例代码即可。如需要使用示例3,则只需要完成第二及第五部分。
(三)关于代码
见:
二、集群安装
主要步骤如下:
1、安装及启动zookeeper集群
2、安装及启动storm集群
3、安装及启动kafka集群,并创建topic和producer,然后创建consumer验证集群正常
(一)安装及启动zookeeper集群
见安装zookeeper集群
(二)安装及启动storm集群
见安装storm集群
(三)安装及启动kafka集群,并创建topic和producer
1、使用3台机器搭建Kafka集群:
192.168.169.92 gdc-dn01-test
192.168.169.93 gdc-dn02-test
192.168.169.94 gdc-dn03-test
2、在安装Kafka集群之前,这里没有使用Kafka自带的Zookeeper,而是独立安装了一个Zookeeper集群,也是使用这3台机器,保证Zookeeper集群正常运行。
3、首先,在gdc-dn01-test上准备Kafka安装文件,执行如下命令:
cd
wget http://mirrors.cnnic.cn/apache/kafka/0.8.2.1/kafka_2.10-0.8.2.1.tgz
tar xvzf kafka_2.10-0.8.2.1.tgz
mv kafka_2.10-0.8.2.1 kafka
4、修改配置文件kafka/config/server.properties,修改如下内容:
broker.id=0
zookeeper.connect=192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181/kafka
这里需要说明的是,默认Kafka会使用ZooKeeper默认的/路径,这样有关Kafka的ZooKeeper配置就会散落在根路径下面,如果 你有其他的应用也在使用ZooKeeper集群,查看ZooKeeper中数据可能会不直观,所以强烈建议指定一个chroot路径,直接在 zookeeper.connect配置项中指定:
zookeeper.connect=192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181/kafka
而且,需要手动在ZooKeeper中创建路径/kafka,使用如下命令连接到任意一台ZooKeeper服务器:
cd ~/zookeeper
bin/zkCli.sh
在ZooKeeper执行如下命令创建chroot路径:
create /kafka ''
这样,每次连接Kafka集群的时候(使用--zookeeper选项),也必须使用带chroot路径的连接字符串,后面会看到。
5、然后,将配置好的安装文件同步到其他的dn02、dn03节点上:
scp -r /usr/local/kafka_2.10-0.8.2.1/ 192.168.169.92:/home/hadoop
scp -r /usr/local/kafka_2.10-0.8.2.1/ 192.168.169.93:/home/hadoop
6、最后,在dn02、dn03节点上配置修改配置文件kafka/config/server.properties内容如下所示:
broker.id=1 # 在dn02修改
broker.id=2 # 在dn03修改
因为Kafka集群需要保证各个Broker的id在整个集群中必须唯一,需要调整这个配置项的值(如果在单机上,可以通过建立多个Broker进程来模拟分布式的Kafka集群,也需要Broker的id唯一,还需要修改一些配置目录的信息)。
7、在集群中的dn01、dn02、dn03这三个节点上分别启动Kafka,分别执行如下命令:
bin/kafka-server-start.sh config/server.properties &
可以通过查看日志,或者检查进程状态,保证Kafka集群启动成功。
8、创建一个名称为my-replicated-topic5的Topic,5个分区,并且复制因子为3,执行如下命令:
bin/kafka-topics.sh --create --zookeeper 192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181/kafka --replication-factor 3 --partitions 5 --topic my-replicated-topic5
9、查看创建的Topic,执行如下命令:
bin/kafka-topics.sh --describe --zookeeper 192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181/kafka --topic my-replicated-topic5
结果信息如下所示:
Topic:my-replicated-topic5 PartitionCount:5 ReplicationFactor:3 Configs:
Topic: my-replicated-topic5 Partition: 0 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: my-replicated-topic5 Partition: 1 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: my-replicated-topic5 Partition: 2 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
Topic: my-replicated-topic5 Partition: 3 Leader: 2 Replicas: 2,1,0 Isr: 2,1,0
Topic: my-replicated-topic5 Partition: 4 Leader: 0 Replicas: 0,2,1 Isr: 0,2,1
上面Leader、Replicas、Isr的含义如下:
1 Partition: 分区
2 Leader : 负责读写指定分区的节点
3 Replicas : 复制该分区log的节点列表
4 Isr : "in-sync" replicas,当前活跃的副本列表(是一个子集),并且可能成为Leader
我们可以通过Kafka自带的bin/kafka-console-producer.sh和bin/kafka-console-consumer.sh脚本,来验证演示如果发布消息、消费消息。
11、在一个终端,启动Producer,并向我们上面创建的名称为my-replicated-topic5的Topic中生产消息,执行如下脚本:
bin/kafka-console-producer.sh --broker-list 192.168.169.92:9092, 192.168.169.93:9092, 192.168.169.94:9092 --topic my-replicated-topic5
12、在另一个终端,启动Consumer,并订阅我们上面创建的名称为my-replicated-topic5的Topic中生产的消息,执行如下脚本:
bin/kafka-console-consumer.sh --zookeeper 192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181/kafka --from-beginning --topic my-replicated-topic5
可以在Producer终端上输入字符串消息行,就可以在Consumer终端上看到消费者消费的消息内容。
也可以参考Kafka的Producer和Consumer的Java API,通过API编码的方式来实现消息生产和消费的处理逻辑。
三、整合kafka与strom
主要步骤
1、创建storm-kafka topology
(1)创建maven project及pom.xml
(2)MyKafkaTopology.java
(3)提交topology到storm集群
2、在producer中输入内容,观察输出情况
(一)创建storm-kafka topology
消息通过各种方式进入到Kafka消息中间件,比如可以通过使用Flume来收集日志数据,然后在Kafka中路由暂存,然后再由实时计算程序 Storm做实时分析,这时我们就需要将在Storm的Spout中读取Kafka中的消息,然后交由具体的Spot组件去分析处理。实际 上,apache-storm-0.9.4这个版本的Storm已经自带了一个集成Kafka的外部插件程序storm- kafka,可以直接使用,
1、在eclipse中创建maven project,pom.xml如下
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.ljh.demo</groupId>
<artifactId>stormkafkademo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>stormkafkademo</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>0.9.4</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka</artifactId>
<version>0.9.4</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.10</artifactId>
<version>0.8.2.1</version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</project>
2、开发一个简单WordCount示例程序,从Kafka读取订阅的消息行,通过空格拆分出单个单词,然后再做词频统计计算,实现的Topology的代码,如下所示:
package com.ljh.demo.stormkafkademo;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class MyKafkaTopology {
public static class KafkaWordSplitter extends BaseRichBolt {
private static final Log LOG = LogFactory.getLog(KafkaWordSplitter.class);
private static final long serialVersionUID = 886149197481637894L;
private OutputCollector collector;
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
public void execute(Tuple input) {
String line = input.getString(0);
LOG.info("RECV[kafka -> splitter] " + line);
String[] words = line.split("\\s+");
for(String word : words) {
LOG.info("EMIT[splitter -> counter] " + word);
collector.emit(input, new Values(word, 1));
}
collector.ack(input);
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
public static class WordCounter extends BaseRichBolt {
private static final Log LOG = LogFactory.getLog(WordCounter.class);
private static final long serialVersionUID = 886149197481637894L;
private OutputCollector collector;
private Map<String, AtomicInteger> counterMap;
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
this.counterMap = new HashMap<String, AtomicInteger>();
}
public void execute(Tuple input) {
String word = input.getString(0);
int count = input.getInteger(1);
LOG.info("RECV[splitter -> counter] " + word + " : " + count);
AtomicInteger ai = this.counterMap.get(word);
if(ai == null) {
ai = new AtomicInteger();
this.counterMap.put(word, ai);
}
ai.addAndGet(count);
collector.ack(input);
LOG.info("CHECK statistics map: " + this.counterMap);
}
@Override
public void cleanup() {
LOG.info("The final result:");
Iterator<Entry<String, AtomicInteger>> iter = this.counterMap.entrySet().iterator();
while(iter.hasNext()) {
Entry<String, AtomicInteger> entry = iter.next();
LOG.info(entry.getKey() + "\t:\t" + entry.getValue().get());
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
public static void main(String[] args) throws AlreadyAliveException, InvalidTopologyException, InterruptedException {
String zks = "192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181";
String topic = "my-replicated-topic5";
String zkRoot = "/storm"; // default zookeeper root configuration for storm
String id = "word";
BrokerHosts brokerHosts = new ZkHosts(zks,"/kafka/brokers");
SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id);
spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
spoutConf.forceFromStart = false;
spoutConf.zkServers = Arrays.asList(new String[] {"192.168.169.91", "192.168.169.92", "192.168.169.93"});
spoutConf.zkPort = 2181;
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 5); // Kafka我们创建了一个5分区的Topic,这里并行度设置为5
builder.setBolt("word-splitter", new KafkaWordSplitter(), 2).shuffleGrouping("kafka-reader");
builder.setBolt("word-counter", new WordCounter()).fieldsGrouping("word-splitter", new Fields("word"));
Config conf = new Config();
String name = MyKafkaTopology.class.getSimpleName();
System.out.println("test");
if (args != null && args.length > 0) {
// Nimbus host name passed from command line
conf.put(Config.NIMBUS_HOST, args[0]);
conf.setNumWorkers(3);
StormSubmitter.submitTopologyWithProgressBar(name, conf, builder.createTopology());
} else {
conf.setMaxTaskParallelism(3);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(name, conf, builder.createTopology());
Thread.sleep(60000);
cluster.shutdown();
}
}
}
3、提交我们开发的Topology程序到storm集群中
storm jar stormkafkademo-0.0.1-SNAPSHOT.jar com.ljh.demo.stormkafkademo.MyKafkaTopology 192.168.169.91
(二)查看topology的运行结果
可以通过查看日志文件(logs/目录下)或者Storm UI来监控Topology的运行状况。如果程序没有错误,可以使用前面我们使用的Kafka Producer来生成消息,就能看到我们开发的Storm Topology能够实时接收到并进行处理。
上面Topology实现代码中,有一个很关键的配置对象SpoutConfig,配置属性如下所示:
spoutConf.forceFromStart = false;
该配置是指,如果该Topology因故障停止处理,下次正常运行时是否从Spout对应数据源Kafka中的该订阅Topic的起始位置开始读 取,如果forceFromStart=true,则之前处理过的Tuple还要重新处理一遍,否则会从上次处理的位置继续处理,保证Kafka中的 Topic数据不被重复处理,是在数据源的位置进行状态记录。
四、整合kafka、storm与hdfs
主要步骤:
1、创建topic并启动producer
2、WordSplitterBolt.java
3、WordCounterBolt.java
4、KafkaStormHdfsTopology.java
5、pom.xml内容如下:
6、编译后把集群提交到storm
7、在kafka-console-producer中输入内容,并查看结果
注:本示例使用第二部分创建的集群
1、创建topic并启动producer
bin/kafka-topics.sh --create --zookeeper 192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181/kafka --replication-factor 3 --partitions 5 --topic test3
bin/kafka-console-producer.sh --broker-list 192.168.169.92:9092, 192.168.169.93:9092, 192.168.169.94:9092 --topic test3
2、WordSplitterBolt.java
package com.ljh.demo.stormkafkademo;
import java.util.Map;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
/*
* 将kafka发送过来的数据按照空格拆分
*/
public class WordSplitterBolt extends BaseRichBolt {
private static final Log LOG = LogFactory.getLog(WordSplitterBolt.class);
private static final long serialVersionUID = 65437289133090921L;
private OutputCollector collector;
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
public void execute(Tuple input) {
String line = input.getString(0);
LOG.info("RECV[kafka -> splitter] " + line);
String[] words = line.split("\\s+");
for (String word : words) {
LOG.info("EMIT[splitter -> counter] " + word);
// collector.emit(new Values(word,1));
collector.emit(input, new Values(word, 1));
}
collector.ack(input);
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
3、WordCounterBolt.java
package com.ljh.demo.stormkafkademo.bolt;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
public class WordCounterBolt extends BaseRichBolt {
private static final Log LOG = LogFactory.getLog(WordCounterBolt.class);
private static final long serialVersionUID = 8557689093276234L;
private OutputCollector collector;
private Map<String, AtomicInteger> counterMap;
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
this.counterMap = new HashMap<String, AtomicInteger>();
}
public void execute(Tuple input) {
String word = input.getString(0);
int count = input.getInteger(1);
LOG.info("RECV[splitter -> counter] " + word + " : " + count);
AtomicInteger ai = this.counterMap.get(word);
if (ai == null) {
ai = new AtomicInteger();
this.counterMap.put(word, ai);
}
ai.addAndGet(count);
collector.emit(input, new Values(word, ai));
// collector.ack(input);
LOG.info("CHECK statistics map: " + this.counterMap);
}
//在topology被kill掉时执行,一般用于本地调试
@Override
public void cleanup() {
LOG.info("The final result:");
Iterator<Entry<String, AtomicInteger>> iter = this.counterMap
.entrySet().iterator();
while (iter.hasNext()) {
Entry<String, AtomicInteger> entry = iter.next();
LOG.info(entry.getKey() + "\t:\t" + entry.getValue().get());
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
4、KafkaStormHdfsTopology.java
package com.ljh.demo.stormkafkademo;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.storm.hdfs.bolt.HdfsBolt;
import org.apache.storm.hdfs.bolt.format.DefaultFileNameFormat;
import org.apache.storm.hdfs.bolt.format.DelimitedRecordFormat;
import org.apache.storm.hdfs.bolt.format.FileNameFormat;
import org.apache.storm.hdfs.bolt.format.RecordFormat;
import org.apache.storm.hdfs.bolt.rotation.FileRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy;
import org.apache.storm.hdfs.bolt.rotation.TimedRotationPolicy.TimeUnit;
import org.apache.storm.hdfs.bolt.sync.CountSyncPolicy;
import org.apache.storm.hdfs.bolt.sync.SyncPolicy;
import com.ljh.demo.stormkafkademo.bolt.WordCounterBolt;
import storm.kafka.BrokerHosts;
import storm.kafka.KafkaSpout;
import storm.kafka.SpoutConfig;
import storm.kafka.StringScheme;
import storm.kafka.ZkHosts;
import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.StormSubmitter;
import backtype.storm.generated.AlreadyAliveException;
import backtype.storm.generated.InvalidTopologyException;
import backtype.storm.spout.SchemeAsMultiScheme;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
/*
* 本类完成以下内容
* 1、从kafka中读取消息:通过kafkaSpout
* 2、在storm中对消息进行处理,主要完成(1)WordSplitterBolt对消息进行拆分(2)WordCounterBolt进行统计
* 3、将结果输出到hdfs:通过hdfsBolt
*/
public class KafkaStormHdfsTopology {
private static final String h1 = "192.168.169.91";
private static final String h2 = "192.168.169.92";
private static final String h3 = "192.168.169.93";
//args[0]:nimbus hostname; args[1]:topology名称; args[2]:topic名称。 三都均为optional
public static void main(String[] args) throws AlreadyAliveException,
InvalidTopologyException, InterruptedException {
String zks = h1 + ":2181," + h2 + ":2181," + h3 + ":2181";
String topic = null;
// 指定topic名称
if (args.length <= 2) {
topic = "kafka-storm-hdfs-demo";
} else {
topic = args[2];
}
// storm信息在zookeeper中的默认存储僧
String zkRoot = "/storm";
String id = "word";
// 1、配置spout从kafka中读取消息
// 默认情况下,brokers的目录位于/brokers,为方便管理,将kafka相关的信息都放入了/kafka中。
BrokerHosts brokerHosts = new ZkHosts(zks, "/kafka/brokers");
SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot, id);
spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
spoutConf.forceFromStart = false;
spoutConf.zkServers = Arrays.asList(new String[] { h1, h2, h3 });
spoutConf.zkPort = 2181;
// 2、配置hdfs-bolt,将结果写入hdfs中
RecordFormat format = new DelimitedRecordFormat()
.withFieldDelimiter("\t");
// 每收到1000个tuple同步一次到hdfs
SyncPolicy syncPolicy = new CountSyncPolicy(1000);
// 每分钟同步一次到hdfs。只要满足1分钟,或者1000tuple均会触发同步。
FileRotationPolicy rotationPolicy = new TimedRotationPolicy(1.0f,
TimeUnit.MINUTES); // rotate files
FileNameFormat fileNameFormat = new DefaultFileNameFormat()
.withPath("/storm/").withPrefix("app_").withExtension(".log"); // set
// file
// name
// format
HdfsBolt hdfsBolt = new HdfsBolt()
.withFsUrl("hdfs://gdc-nn01-test:9000")
.withFileNameFormat(fileNameFormat).withRecordFormat(format)
.withRotationPolicy(rotationPolicy).withSyncPolicy(syncPolicy);
// 3、创建topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka-reader", new KafkaSpout(spoutConf), 5); // Kafka鎴戜滑鍒涘缓浜嗕竴涓5鍒嗗尯鐨凾opic锛岃繖閲屽苟琛屽害璁剧疆涓5
builder.setBolt("word-splitter", new WordSplitterBolt(), 2)
.shuffleGrouping("kafka-reader");
builder.setBolt("word-counter", new WordCounterBolt()).fieldsGrouping(
"word-splitter", new Fields("word"));
builder.setBolt("hdfs-bolt", hdfsBolt, 2).shuffleGrouping(
"word-counter");
// 4、启动topology
Config conf = new Config();
String topologyName = null;
if (args.length <= 1) {
topologyName = KafkaStormHdfsTopology.class.getSimpleName();
} else {
topologyName = args[1];
}
String nimbusHost = null;
if(args.length == 0){
nimbusHost = h1;
}else{
nimbusHost = args[0];
}
System.out.println("test");
if (args != null && args.length > 0) {
conf.put(Config.NIMBUS_HOST, nimbusHost);
conf.setNumWorkers(3);
StormSubmitter.submitTopologyWithProgressBar(topologyName, conf,
builder.createTopology());
} else {
conf.setMaxTaskParallelism(3);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(topologyName, conf, builder.createTopology());
Thread.sleep(60000);
cluster.shutdown();
}
}
}
5、pom.xml内容如下:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.ljh.demo</groupId>
<artifactId>stormkafkademo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>stormkafkademo</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>0.9.4</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka</artifactId>
<version>0.9.4</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-hdfs</artifactId>
<version>0.9.4</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.10</artifactId>
<version>0.8.2.1</version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
</dependencies>
</project>
6、编译后把集群提交到storm
storm jar stormkafkademo-0.0.1-SNAPSHOT.jar com.ljh.demo.stormkafkademo.MyKafkaTopology 192.168.169.91 ksh test3
7、在kafka-console-producer中输入内容,并查看结果
(1)在192.168.169.91:8080中查看数据的发送850712.png以及是否存在错误
(2)到hdfs中查看内容
hadoop fs -ls /storm,并cat相应的文件
输出结果样例:
as 292
possible. 64
reasons, 32
tend 32
skip 32
OS 63
packaged 32
it 64
a 63
to 224
try 98
put 32
in 32
OS 64
hierarchy, 32
can 32
六、一些问题:
1、配置kafka时,如果使用zookeeper create /kafka创建了节点,kafka与storm集成时new ZkHosts(zks) 需要改成 new ZkHosts(zks,”/kafka/brokers”),不然会报java.lang.RuntimeException: java.lang.RuntimeException: org.apache.zookeeper.KeeperException$NoNodeException: KeeperErrorCode = NoNode for /brokers/topics/my-replicated-topic5/partitions。
storm-kafka插件默认kafka的 zk_path如下:
public class ZkHosts implements BrokerHosts {
private static final String DEFAULT_ZK_PATH = “/brokers”;
2、如果出现以下问题,代表偏移量出错,建议重新开一个topic
ERROR [KafkaApi-3] Error when processing fetch request for partition [xxxxx,1] offset 112394 from consumer with correlation id 0 (kafka.server.KafkaApis)
kafka.common.OffsetOutOfRangeException: Request for offset 112394 but we only have log segments in the range 0 to 665.
3、在页面查看状态时,当在producer生产消息后,页面会有一定的延迟,应该是有缓存,缓存20个字节后一次提交,因此可以尝试一次大量提交word。
4、当没有某个topic,或者是某个topic的node放置不在默认位置时,会有以下异常:
java.lang.RuntimeException: java.lang.RuntimeException: org.apache.zookeeper.KeeperException$NoNodeException: KeeperErrorCode = NoNode for /kafka/brokers/topics/mytest/partitions at storm.kafka.Dynam
5、关于日志
在初次运行程序时,可能会出现各种各样的错误,一般错误均可在日志中发现,在本例中,需要重点关注的日志有:
(1)supervisor上的work日志,位于$STORM_HOME/logs,如果集群正常,但某个topology运行出现错误,一般可以在这些work日志中找到问题。最常见的是CLASSNOTFOUNDEXCEPTION, CLASSNOTDEFINDEXCEPTION,都是缺包导致的,将它们放入$STORM_HOME/lib即可。
(2)nimbus上的日志,位于$STORM_HOME/logs,主要观察整个集群的状态,有以下4个文件
access.log metrics.log nimbus.log ui.log
(3)kafka的日志,位于$KAFKA_HOME/logs,观察kafka是否运行正常。
6.关于emit与transfer(转自http://www.reader8.cn/jiaocheng/20120801/2057699.html)
storm ui上emit和transferred的区别
最开始对storm ui上展示出来的emit和transferred数量不是很明白, 于是在storm-user上google了一把, 发现有人也有跟我一样的困惑, nathan做了详细的回答:
emitted栏显示的数字表示的是调用OutputCollector的emit方法的次数.
transferred栏显示的数字表示的是实际tuple发送到下一个task的计数.
如果一个bolt A使用all group的方式(每一个bolt都要接收到)向bolt B发射tuple, 此时bolt B启动了5个task, 那么trasferred显示的数量将是emitted的5倍.
如果一个bolt A内部执行了emit操作, 但是没有指定tuple的接受者, 那么transferred将为0.
这里还有关于spout, bolt之间的emitted数量的关系讨论, 也解释了我的一些疑惑:
有 的bolt的execture方法中并没有emit tuple, 但是storm ui中依然有显示emitted, 主要是因为它调用了ack方法, 而该方法将emit ack tuple到系统默认的acker bolt. 因此如果anchor方式emit一个tuple, emitted一般会包含向acker bolt发射tuple的数量.
另外collector.emit(new Values(xxx))和collector.emit(tuple, new Values(xxx)) 这两种不同的emit方法也会影响后面bolt的emitted和transferred, 如果是前者, 则后续bolt的这两个值都是0, 因为前一个emit方法是非安全的, 不再使用acker来进行校验.
7、kafka中出现以下异常:
[2015-06-09 17:03:05,094] ERROR [KafkaApi-0] Error processing ProducerRequest with correlation id 616 from client kafka-client on partition [test3,0] (kafka.server.KafkaApis)
kafka.common.MessageSizeTooLargeException: Message size is 2211366 bytes which exceeds the maximum configured message size of 1000012.
原因是集群默认每次只能接受约1M的消息,如果客户端一次发送的消息大于这个数值则会导致异常。
在server.properties中添加以下参数
message.max.bytes=1000000000
replica.fetch.max.bytes=1073741824
同时在consumer.properties中添加以下参数:
fetch.message.max.bytes=1073741824
然后重启kafka进程即可,现在每次最大可接收100M的消息。
8、修改kafka数据的默认放置位置:
server.properties中,将
log.dir=/tmp/kafka-los
改为
log.dir=/home/data/kafka
9、删除kafka中的topic
bin/kafka-topics.sh --zookeeper 192.168.169.91:2181,192.168.169.92:2181,192.168.169.93:2181/kafka --delete --topic test2
10、
delete.topic.enable=true
默认为false,即delete topic时只是marked for deletion,但并不会真正删除topic。