为什么要优化

  • 系统的吞吐量瓶颈往往出现在数据库的访问速度上
  • 随着应用程序的运行,数据库的中的数据会越来越多,处理时间会相应变慢
  • 数据是存放在磁盘上的,读写速度无法和内存相比

如何优化

  • 设计数据库时:数据库表、字段的设计,存储引擎
  • 利用好MySQL自身提供的功能,如索引等
  • 横向扩展:MySQL集群、负载均衡、读写分离
  • SQL语句的优化(收效甚微)

一、数据库结构优化

  (1)   表结构设计

  遵守范式:第一范式1NF:字段原子性   第二范式:消除对主键的部分依赖  第三范式:消除对主键的传递依赖

 

  • 1)范式优化:表的设计合理化(符合3NF),比如消除冗余(节省空间); 
  • 2)反范式优化:比如适当加冗余等(减少join)
  • 3)拆分表:分区将数据在物理上分隔开,不同分区的数据可以制定保存在处于不同磁盘上的数据文件里。这样,当对这个表进行查询时,只需要在表分区中进行扫描,而不必进行全表扫描,明显缩短了查询时间,另外处于不同磁盘的分区也将对这个表的数据传输分散在不同的磁盘I/O,一个精心设置的分区可以将数据传输对磁盘I/O竞争均匀地分散开。对数据量大的时时表可采取此方法,可按月自动建表分区。

  建表原则:

 

 

原则1:尽量使用整型表示字符串,例如ip可以转换后存储整型

 

 

  原则2:尽可能选择小的数据类型和指定短的长度,尽量使用TINYINTSMALLINTMEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED;

  原则3:尽可能使用 not null

  原则4:单表字段不宜过多

  原则5:VARCHAR的长度只分配真正需要的空间;

 

 

 

 

 (2)   存储引擎的选择 

 

  MyISAM引擎是MySQL 5.1及之前版本的默认引擎,它的特点是:

 

  • 不支持行锁,读取时对需要读到的所有表加锁,写入时则对表加排它锁
  • 不支持事务
  • 不支持外键
  • 不支持崩溃后的安全恢复
  • 在表有读取查询的同时,支持往表中插入新纪录
  • 支持BLOBTEXT的前500个字符索引,支持全文索引
  • 支持延迟更新索引,极大提升写入性能
  • 对于不会进行修改的表,支持压缩表,极大减少磁盘空间占用
  InnoDB

  InnoDB在MySQL 5.5后成为默认索引,它的特点是:

  • 支持行锁,采用MVCC来支持高并发
  • 支持事务
  • 支持外键
  • 支持崩溃后的安全恢复
  • 不支持全文索引

  总体来讲,MyISAM适合SELECT密集型的表,而InnoDB适合INSERTUPDATE密集型的表

 

    

mysql 数据库结构优化 mysql数据库的优化方案_mysql 数据库结构优化

MyISAM和InnoDB的区别:

  • 1. InnoDB支持事务,MyISAM不支持,对于InnoDB每一条SQL都默认封装成事务,自动提交,这样会影响速度,所以最好把多条SQL语言放在begin和commit之间,组成一个事务;
  • 2. InnoDB支持外键,而MyISAM不支持。对一个包含外键的InnoDB表转为MYISAM会失败;
  • 3. InnoDB不保存表的具体行数,执行select count(*) from table时需要全表扫描。而MyISAM用一个变量保存了整个表的行数,执行上述语句时只需要读出该变量即可,速度很快;
  • 4. Innodb不支持全文索引,而MyISAM支持全文索引,查询效率上MyISAM要高;
  • 5. 锁机制不同: InnoDB 为行级锁,myisam 为表级锁。

  注意:当数据库无法确定,所找的行时,也会变为锁定整个表。

  如: update table set num = 10 where username like “%test%”;

 

二、索引优化

  MySQL中索引类型:普通索引(key),唯一索引(unique key),主键索引(primary key),全文索引(fulltext key

  三种索引的索引方式是一样的,只不过对索引的关键字有不同的限制:

  • 普通索引:对关键字没有限制
  • 唯一索引:要求记录提供的关键字不能重复
  • 主键索引:要求关键字唯一且不为null

  索引使用场景:where条件、order by 条件、join条件等

  聚集索引(Clustered):表中各行的物理顺序与键值的逻辑(索引)顺序相同,每个表只能有一个

 

非聚集索引(Non-clustered):非聚集索引指定表的逻辑顺序。数据存储在一个位置,索引存储在另一个位置,索引中包含指向数据存储位置的指针。可以有多个,小于249个

 索引覆盖  如果要查询的字段都建立过索引,那么引擎会直接在索引表中查询而不会访问原始数据(否则只要有一个字段没有建立索引就会做全表扫描),这叫索引覆盖。因此我们需要尽可能的在select后==只写必要的查询字段==,以增加索引覆盖的几率。这里值得注意的是不要想着为每个字段建立索引,因为优先使用索引的优势就在于其体积小。

  在设计索引字段时应注意:

  1、索引字段长度不能太长,否则太占用存储空间

  2、经常查询的字段,且group by、order by 后的字段比较适宜索引,一般一个表不超过6个索引

  3、索引字段不能重复太多

索引不能被使用的常见情况:

    1、字段没有独立出现

  比如下面两条SQL语句在语义上相同,但是第一条会使用主键索引而第二条不会。

select * from user where id = 20-1;
  select * from user where id+1 = 20;
  2、
like
like
like
title
3、or条件
一但有一边无索引可用就会导致整个SQL语句的全表扫描
4、值分布很稀少的字段不适合建索引;例如:状态值,不容易使用到索引
  
 5、在括号内的强制转换,会使用不到索引;如时间的转换查询

三、优化SQL语句

  • 1)应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描;
  • 2)应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null

    可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0
  • 3)很多时候用exists代替in是一个好的选择;
  • 4)用Where子句替换HAVING子句,因为HAVING只会在检索出所有记录之后才对结果集进行过滤;
  • 5)可通过开启慢查询日志来找出较慢的SQL。迅速的定位执行速度慢的语句、开启慢查询、设置慢查询时间、启用慢查询日志、通过mysqldumoslow工具对慢日志进行分类汇总;
  • 6)避免Select * (不查询多余的列与行);
  • 7)不做列运算:SELECT id WHERE age + 1 = 10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边
  • 8)OR改写成INOR的效率是n级别,IN的效率是log(n)级别,in的个数建议控制在200以内

 

四、分表技术(水平分割、垂直分割)、分区技术

  MySQL在5.1版引入的分区是一种简单的水平拆分,用户需要在建表的时候加上分区参数,对应用是透明的无需修改代码

  对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对SQL层来说是一个完全封装底层的黑盒子。MySQL实现分区的方式也意味着索引也是按照分区的子表定义,没有全局索引

  

mysql 数据库结构优化 mysql数据库的优化方案_数据_02

 

 

   用户的SQL语句是需要针对分区表做优化,SQL条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,可以通过EXPLAIN PARTITIONS来查看某条SQL语句会落在那些分区上,从而进行SQL优化,如下图5条记录落在两个分区上:

  

mysql> explain partitions select count(1) from user_partition where id in (1,2,3,4,5);
+----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
| id | select_type | table          | partitions | type  | possible_keys | key     | key_len | ref  | rows | Extra                    |
+----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
|  1 | SIMPLE      | user_partition | p1,p4      | range | PRIMARY       | PRIMARY | 8       | NULL |    5 | Using where; Using index |
+----+-------------+----------------+------------+-------+---------------+---------+---------+------+------+--------------------------+
1 row in set (0.00 sec)

  

分区的好处是:

  • 可以让单表存储更多的数据
  • 分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作
  • 部分查询能够从查询条件确定只落在少数分区上,速度会很快
  • 分区表的数据还可以分布在不同的物理设备上,从而搞笑利用多个硬件设备
  • 可以使用分区表赖避免某些特殊瓶颈,例如InnoDB单个索引的互斥访问、ext3文件系统的inode锁竞争
  • 可以备份和恢复单个分区

分区的限制和缺点:

  • 一个表最多只能有1024个分区
  • 如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来
  • 分区表无法使用外键约束
  • NULL值会使分区过滤无效
  • 所有分区必须使用相同的存储引擎

分区的类型:

  • RANGE分区:基于属于一个给定连续区间的列值,把多行分配给分区
  • LIST分区:类似于按RANGE分区,区别在于LIST分区是基于列值匹配一个离散值集合中的某个值来进行选择
  • HASH分区:基于用户定义的表达式的返回值来进行选择的分区,该表达式使用将要插入到表中的这些行的列值进行计算。这个函数可以包含MySQL中有效的、产生非负整数值的任何表达式
  • KEY分区:类似于按HASH分区,区别在于KEY分区只支持计算一列或多列,且MySQL服务器提供其自身的哈希函数。必须有一列或多列包含整数值

分区适合的场景有:

  • 最适合的场景数据的时间序列性比较强,则可以按时间来分区,如下所示:
CREATE TABLE members (
    firstname VARCHAR(25) NOT NULL,
    lastname VARCHAR(25) NOT NULL,
    username VARCHAR(16) NOT NULL,
    email VARCHAR(35),
    joined DATE NOT NULL
)
PARTITION BY RANGE( YEAR(joined) ) (
    PARTITION p0 VALUES LESS THAN (1960),
    PARTITION p1 VALUES LESS THAN (1970),
    PARTITION p2 VALUES LESS THAN (1980),
    PARTITION p3 VALUES LESS THAN (1990),
    PARTITION p4 VALUES LESS THAN MAXVALUE
);

查询时加上时间范围条件效率会非常高,同时对于不需要的历史数据能很容的批量删除。

  • 如果数据有明显的热点,而且除了这部分数据,其他数据很少被访问到,那么可以将热点数据单独放在一个分区,让这个分区的数据能够有机会都缓存在内存中,查询时只访问一个很小的分区表,能够有效使用索引和缓存

另外MySQL有一种早期的简单的分区实现 - 合并表(merge table),限制较多且缺乏优化,不建议使用,应该用新的分区机制来替代

  垂直拆分

  垂直分库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。垂直分表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联

mysql 数据库结构优化 mysql数据库的优化方案_mysql优化_03

 

 

 

垂直拆分的优点是:

  • 可以使得行数据变小,一个数据块(Block)就能存放更多的数据,在查询时就会减少I/O次数(每次查询时读取的Block 就少)
  • 可以达到最大化利用Cache的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起
  • 数据维护简单

缺点是:

  • 主键出现冗余,需要管理冗余列
  • 会引起表连接JOIN操作(增加CPU开销)可以通过在业务服务器上进行join来减少数据库压力
  • 依然存在单表数据量过大的问题(需要水平拆分)
  • 事务处理复杂

  水平拆分

  概述

  水平拆分是通过某种策略将数据分片来存储,分库内分表和分库两部分,每片数据会分散到不同的MySQL表或库,达到分布式的效果,能够支持非常大的数据量。前面的表分区本质上也是一种特殊的库内分表

库内分表,仅仅是单纯的解决了单一表数据过大的问题,由于没有把表的数据分布到不同的机器上,因此对于减轻MySQL服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的IO、CPU、网络,这个就要通过分库来解决

  前面垂直拆分的用户表如果进行水平拆分,结果是:

    

mysql 数据库结构优化 mysql数据库的优化方案_数据_04

  实际情况中往往会是垂直拆分和水平拆分的结合,即将Users_A_MUsers_N_Z再拆成UsersUserExtras,这样一共四张表

  水平拆分的优点是:

  • 不存在单库大数据和高并发的性能瓶颈
  • 应用端改造较少
  • 提高了系统的稳定性和负载能力

  缺点是:

  • 分片事务一致性难以解决
  • 跨节点Join性能差,逻辑复杂
  • 数据多次扩展难度跟维护量极大

  分片原则

  • 能不分就不分,参考单表优化
  • 分片数量尽量少,分片尽量均匀分布在多个数据结点上,因为一个查询SQL跨分片越多,则总体性能越差,虽然要好于所有数据在一个分片的结果,只在必要的时候进行扩容,增加分片数量
  • 分片规则需要慎重选择做好提前规划,分片规则的选择,需要考虑数据的增长模式,数据的访问模式,分片关联性问题,以及分片扩容问题,最近的分片策略为范围分片,枚举分片,一致性Hash分片,这几种分片都有利于扩容
  • 尽量不要在一个事务中的SQL跨越多个分片,分布式事务一直是个不好处理的问题
  • 查询条件尽量优化,尽量避免Select * 的方式,大量数据结果集下,会消耗大量带宽和CPU资源,查询尽量避免返回大量结果集,并且尽量为频繁使用的查询语句建立索引。
  • 通过数据冗余和表分区赖降低跨库Join的可能

  这里特别强调一下分片规则的选择问题,如果某个表的数据有明显的时间特征,比如订单、交易记录等,则他们通常比较合适用时间范围分片,因为具有时效性的数据,我们往往关注其近期的数据,查询条件中往往带有时间字段进行过滤,比较好的方案是,当前活跃的数据,采用跨度比较短的时间段进行分片,而历史性的数据,则采用比较长的跨度存储。

  总体上来说,分片的选择是取决于最频繁的查询SQL的条件,因为不带任何Where语句的查询SQL,会遍历所有的分片,性能相对最差,因此这种SQL越多,对系统的影响越大,所以我们要尽量避免这种SQL的产生。

  解决方案

  由于水平拆分牵涉的逻辑比较复杂,当前也有了不少比较成熟的解决方案。这些方案分为两大类:客户端架构和代理架构。

  客户端架构

  通过修改数据访问层,如JDBC、Data Source、MyBatis,通过配置来管理多个数据源,直连数据库,并在模块内完成数据的分片整合,一般以Jar包的方式呈现

这是一个客户端架构的例子:

    

mysql 数据库结构优化 mysql数据库的优化方案_字段_05

  可以看到分片的实现是和应用服务器在一起的,通过修改Spring JDBC层来实现

  客户端架构的优点是:

  • 应用直连数据库,降低外围系统依赖所带来的宕机风险
  • 集成成本低,无需额外运维的组件

  缺点是:

  • 限于只能在数据库访问层上做文章,扩展性一般,对于比较复杂的系统可能会力不从心
  • 将分片逻辑的压力放在应用服务器上,造成额外风险
  代理架构

  通过独立的中间件来统一管理所有数据源和数据分片整合,后端数据库集群对前端应用程序透明,需要独立部署和运维代理组件

这是一个代理架构的例子:

mysql 数据库结构优化 mysql数据库的优化方案_mysql优化_06

  代理组件为了分流和防止单点,一般以集群形式存在,同时可能需要Zookeeper之类的服务组件来管理

  代理架构的优点是:

  • 能够处理非常复杂的需求,不受数据库访问层原来实现的限制,扩展性强
  • 对于应用服务器透明且没有增加任何额外负载

  缺点是:

  • 需部署和运维独立的代理中间件,成本高
  • 应用需经过代理来连接数据库,网络上多了一跳,性能有损失且有额外风险

五、读写分离

  读写分离是依赖于主从复制,而主从复制又是为读写分离服务的。因为主从复制要求slave不能写只能读(如果对slave执行写操作,那么show slave status将会呈现Slave_SQL_Running=NO,此时你需要按照前面提到的手动同步一下slave)。

方案一、定义两种连接

  就像我们在学JDBC时定义的DataBase一样,我们可以抽取出ReadDataBase,WriteDataBase implements DataBase,但是这种方式无法利用优秀的线程池技术如DruidDataSource帮我们管理连接,也无法利用Spring AOP让连接对DAO层透明。

方案二、使用Spring AOP

  如果能够使用Spring AOP解决数据源切换的问题,那么就可以和MybatisDruid整合到一起了。

  我们在整合Spring1Mybatis时,我们只需写DAO接口和对应的SQL语句,那么DAO实例是由谁创建的呢?实际上就是Spring帮我们创建的,它通过我们注入的数据源,帮我们完成从中获取数据库连接、使用连接执行 SQL 语句的过程以及最后归还连接给数据源的过程。

  如果我们能在调用DAO接口时根据接口方法命名规范(增addXXX/createXXX、删deleteXX/removeXXX、改updateXXXX、查selectXX/findXXX/getXX/queryXXX)动态地选择数据源(读数据源对应连接master而写数据源对应连接slave),那么就可以做到读写分离了。

六、缓存

缓存

  缓存可以发生在这些层次:

  • MySQL内部:在系统调优参数介绍了相关设置
  • 数据访问层:比如MyBatis针对SQL语句做缓存,而Hibernate可以精确到单个记录,这里缓存的对象主要是持久化对象Persistence Object
  • 应用服务层:这里可以通过编程手段对缓存做到更精准的控制和更多的实现策略,这里缓存的对象是数据传输对象Data Transfer Object
  • Web层:针对web页面做缓存
  • 浏览器客户端:用户端的缓存

  可以根据实际情况在一个层次或多个层次结合加入缓存。这里重点介绍下服务层的缓存实现,目前主要有两种方式:

  • 直写式(Write Through):在数据写入数据库后,同时更新缓存,维持数据库与缓存的一致性。这也是当前大多数应用缓存框架如Spring Cache的工作方式。这种实现非常简单,同步好,但效率一般。
  • 回写式(Write Back):当有数据要写入数据库时,只会更新缓存,然后异步批量的将缓存数据同步到数据库上。这种实现比较复杂,需要较多的应用逻辑,同时可能会产生数据库与缓存的不同步,但效率非常高。