1、输入原始图片
2、代码实现:
#include<opencv2\opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int main() {
Mat src = imread("C:/Users/lzg/Desktop/opencv_test/Project1/1.png");
if (src.empty()) {
cout << "meiyoutu" << endl;
}
namedWindow("input", CV_WINDOW_AUTOSIZE);
imshow("input", src);
Scalar colorTab[] = {
Scalar(0,0,255),
Scalar(0,255,0),
Scalar(255,0,0),
Scalar(0,255,255),
Scalar(255,0,255)
};
int width = src.cols;
int height = src.rows;
int dims = src.channels();
int sampleCount = width*height;
int clusterCount = 4;
Mat points(sampleCount, dims, CV_32F, Scalar(10));
Mat labels;
Mat centers(clusterCount, 1, points.type());
int index = 0;
for (int row = 0; row < height; row++) { //RGB数据转换到样本数据
for (int col = 0; col < width; col++) {
index = row*width + col;
Vec3b bgr = <Vec3b>(row, col);
<float>(index, 0) = static_cast<int>(bgr[0]);
<float>(index, 1) = static_cast<int>(bgr[1]);
<float>(index, 2) = static_cast<int>(bgr[2]);
}
}
//运行Kmeans
TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1); //迭代停止条件
kmeans(points, clusterCount, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
//显示图像分割结果,要把样本数据点转换回去
Mat result = Mat::zeros(src.size(), src.type());
for (int row = 0; row < height; row++) {
for (int col = 0; col < width; col++) {
index = row*width + col;
int label = labels.at<int>(index, 0);
result.at<Vec3b>(row, col)[0] = colorTab[label][0];
result.at<Vec3b>(row, col)[1] = colorTab[label][1];
result.at<Vec3b>(row, col)[2] = colorTab[label][2];
}
}
imshow("KMeans image segmentation demo", result);
waitKey(0);
return 0;
效果图: