其实很早之前我就写过,不过当是没有详细的介绍,今天就来详细的介绍一下,代码见github resnet因其残差结构而出名,那么它的残差结构是什么那?就是下面的
左边是深度小于50的网络结构残差结构,右边是深度大于等于50的残差块结构,我们在这里称其为小残差块,因为还有大的残差块,大的残差块有很多小的残差块组成,resnet就是由很多个大的残差块组成.
另外对于除了第一个之外的每个大的残差块的第一个小的残差块和其他的残差块也不太一样,第一个小的残差块用来减小特征图尺寸,其基本结构为下图这样
代码就直接给了,我给了详细的注释:
import torch
from torch import nn
import torch.nn.functional as F
#首先是基础残差快的代码,resnet就是由大残差快组成,每个大残差快又包含数个这种基础残差快
class Bottleneck(nn.Module):
def __init__(self, in_c, out_c, stride = 1, downsampling = False, expansion = 4):#expansion对应一个基础残差块输出通道数扩大的倍数,downsampling是参数用来给跳级结构改变输出通道的
super(Bottleneck, self).__init__() #这里的stride主要是用来控制残差快中第一个残差快的输出步幅,用来降低特征图尺寸(每个大残差都是通过第一个残差快降低feature_map)
self.downsampling = downsampling
self.expansion = expansion
self.bottleneck = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),#解释下inplace参数的意思,为True表示执行relu,false,不执行relu
nn.Conv2d(out_c, out_c, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),
nn.Conv2d(out_c, out_c*self.expansion, kernel_size=1, stride =1, bias=False),
nn.BatchNorm2d(out_c*self.expansion)
)
if self.downsampling:
self.downsample = nn.Sequential(
nn.Conv2d(in_c, out_c*self.expansion, kernel_size=1, stride = stride, bias=False),
nn.BatchNorm2d(out_c*self.expansion)
)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
out = self.bottleneck(x)
out_1 = x
if self.downsampling:
out_1 = self.downsample(x)
out += out_1
out = self.relu(out)
return out
#定义resnet刚开始的卷积块,kernel_size = 7,和残差快不一样,需要单独写出来
def Conv1(in_c = 3, out_c = 64, stride = 2):
return(nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size= 7, stride= stride, padding=3, bias=False),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride= 2, padding= 1)
))
class ResNet(nn.Module):
def __init__(self, blocks, number_classes, expensions = 4):
super(ResNet, self).__init__()
self.expensions = expensions
self.conv1 = Conv1(3, 64, stride= 2)
self.layer1 = self.make_layer(64, 64, blocks[0], stride=1)#注意这里是self.make_layer而不是make_layer,self在这里相当于调用了ResNet这个类,这就是self的作用;另外这里的stride为1,因为在上一层已经下采样了一次
self.layer2 = self.make_layer(256, 128, blocks[1], stride=2)
self.layer3 = self.make_layer(512, 256, blocks[2], stride=2)
self.layer4 = self.make_layer(1024, 512, blocks[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)#这里设为7是因为我要测试的tensor的长宽为224,经过5次下采样特征图就变为了7,z这里可以自己改使它更加的有灵活性
self.liner = nn.Linear(2048, number_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')#看了下源码,pytorch1.6凯明初始化的激活函数已经默认为leaky_relu,这里为了和论文中一样,还是改为relu
if isinstance(m, nn.BatchNorm2d): #BatchNorm2d也有2个超参数,所以要进行初始化
nn.init.constant_(m.weight, 1)#将BatchNorm2d参数初始化为1
nn.init.constant_(m.bias, 0)#偏置初始化为0,为什么这样初始化俺也不知道,由于在定义卷积层时bias=False,所以卷基层没有初始化bias
def make_layer(self, in_c, out_c, block, stride):
layers = []
layers.append(Bottleneck(in_c, out_c, stride= stride, downsampling= True))#这里要单独写,这里用来进行下采样,每个大的残差结构的第一个小的残差块和后面的几个残差块不一样
for i in range(1, block):
layers.append(Bottleneck(out_c * self.expensions, out_c))
return nn.Sequential(*layers)#*加数组可以将数组变为一个一个的元素,所以这里用*layers来将数组变为一个一个的单元,用nn.Sequential链接起来
def forward(self, x):
x = self.conv1(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.liner(x)
return x
def ResNet50():
return ResNet([3, 4, 6, 3], number_classes=1000)
model = ResNet50()
print(model)
X = torch.rand(1, 3, 224, 224)
for blk in model.children():
X = blk(X)
print('output shape: ', X.shape)