一、WordCount

package com.shujia.flink.core

import org.apache.flink.streaming.api.scala._

object Demo1WordCount {
  def main(args: Array[String]): Unit = {
    /**
     * 创建 flink 环境
     */
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    /**
     * flink 执行模式
     * RuntimeExecutionMode.BATCH: 批处理模式,只能用于有界流,计算输出最终的结果
     * RuntimeExecutionMode.STREAMING  : 流处理模式,可以用于有界流也可以用于无界流,输出连续的结果
     */
    //    env.setRuntimeMode(RuntimeExecutionMode.BATCH)

    /**
     * 设置flink任务的并行度
     * 默认和电脑的核数有关
     */
    //    env.setParallelism(2)

    /**
     * 数据从上游发送到下游的超时时间
     * 默认是200毫秒
     */
    //    env.setBufferTimeout(200)

    /**
     * 读取socket数据
     */
    val socketDS: DataStream[String] = env.socketTextStream("master", 8888)

    /**
     * 处理数据
     */
    val resultDS: DataStream[(String, Int)] = socketDS
      .flatMap(_.split(","))
      .map((_, 1))
      .keyBy(_._1)
      .sum(1)

    resultDS.print()
    env.execute()
  }

}

二、Source

1、 从List集合中读取数据

/**
     * 集合本地集合source   -  有界流
     *
     * 当读取的数据源是一个有界流时,flink处理完数据就结束了
     */

    val linesDS: DataStream[String] = env.fromCollection(List("java,spark", "java,hadoop", "java"))

2、从本地文件中读取数据

/**
     * 基于集合构建source   --- 有界流
     */
    val studentDS: DataStream[String] = env.readTextFile("data/students.txt")

3、从socket中读取数据

/**
     * 基于socket构建source   --  无界流
     *
     * 无界流只能使用流处理模式,不能使用批处理模式
     */

    val linesDS: DataStream[String] = env.socketTextStream("master", 8888)

4、自定义Source

package com.shujia.flink.source

import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala._

import java.sql.{Connection, DriverManager, PreparedStatement, ResultSet}

object Demo4MysqlSource {
  def main(args: Array[String]): Unit = {
    //创建flink环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //使用自定义的source读取mysql中的数据
    val mysqlDS: DataStream[String] = env.addSource(new MysqlSource())

    mysqlDS
      .map(stu => (stu.split("\t")(4), 1))
      .keyBy(_._1)
      .sum(1)
      .print()

    env.execute()

  }

  /**
   * 自定义source ,实现SourceFunction接口
   *
   */
  class MysqlSource extends SourceFunction[String] {
    /**
     * run: 用于读取外部数据的方法,只执行一次
     *
     * @param ctx : 上下文对象,用于将读取到的数据发送到下游
     */
    override def run(ctx: SourceFunction.SourceContext[String]): Unit = {
      /**
       * 使用jdbc读取mysql的数据,将读取到的数据发送到下游
       */
      Class.forName("com.mysql.jdbc.Driver")

      //创建连接
      val con: Connection = DriverManager.getConnection("jdbc:mysql://master:3306/bigdata", "root", "123456")
      //编写查询数据的sql
      val stat: PreparedStatement = con.prepareStatement("select * from students")
      //执行查询
      val resultSet: ResultSet = stat.executeQuery()
      //解析数据
      while (resultSet.next()) {
        //通过字段名获取数据
        val id: Long = resultSet.getLong("id")
        val name: String = resultSet.getString("name")
        val age: Long = resultSet.getLong("age")
        val gender: String = resultSet.getString("gender")
        val clazz: String = resultSet.getString("clazz")

        //将每一条数据发送到下游
        ctx.collect(s"$id\t$name\t$age\t$gender\t$clazz")
      }

      //关闭链接
      stat.close()
      con.close()

    }

    //任务被取消的时候执行,一般用于回收资源
    override def cancel(): Unit = {}
  }
}

三、Sink 

1、将数据保存在文件中

package com.shujia.flink.sink

import org.apache.flink.api.common.RuntimeExecutionMode
import org.apache.flink.api.common.serialization.SimpleStringEncoder
import org.apache.flink.configuration.MemorySize
import org.apache.flink.connector.file.sink.FileSink
import org.apache.flink.core.fs.Path

import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy
import org.apache.flink.streaming.api.scala._

import java.time.Duration

object Demo1FileSInk {
  def main(args: Array[String]): Unit = {
    //创建flink环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    env.setRuntimeMode(RuntimeExecutionMode.BATCH)

    //读取数据
    val studentDS: DataStream[String] = env.readTextFile("data/students.txt")

    //统计班级的人数
    val kvDS: DataStream[(String, Int)] = studentDS.map(stu => (stu.split(",")(4), 1))

    val countDS: DataStream[(String, Int)] = kvDS.keyBy(_._1).sum(1)

    //将统计好的结果保存到文件中
    //老版本
    //countDS.writeAsText("data/flink/clazz_num")

    //新版本的api
    val sink: FileSink[(String, Int)] = FileSink
      .forRowFormat(new Path("data/flink/clazz_num"), new SimpleStringEncoder[(String, Int)]("UTF-8"))
      .withRollingPolicy(
        DefaultRollingPolicy.builder()
          //至少包含多少时间的数据
          .withRolloverInterval(Duration.ofSeconds(10))
          //多少时间没有新的数据
          .withInactivityInterval(Duration.ofSeconds(10))
          //数据达到多大
          .withMaxPartSize(MemorySize.ofMebiBytes(1))
          .build())
      .build()

    //使用file sink
    countDS.sinkTo(sink)

    env.execute()

  }

}

2、自定义Sink

package com.shujia.flink.sink

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.scala._

import java.sql.{Connection, DriverManager, PreparedStatement}

object Demo4MysqlSink {
  def main(args: Array[String]): Unit = {
    /**
     * 创建 flink 环境
     */
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    //读取数据
    val linesDS: DataStream[String] = env.readTextFile("data/students.txt")
    //处理数据
    val resultDS: DataStream[(String, Int)] = linesDS.map(line => (line.split(",")(3), 1)).keyBy(_._1).sum(1)

    //将数据保存到MySQL中
    resultDS.addSink(new RichSinkFunction[(String, Int)] {
      var con: Connection = _
      var stat: PreparedStatement = _

      /**
       * 匿名内部类
       * 方法重写 open close invoke
       * open: 在invoke之前执行,每一个task中只执行一次
       * 一般用于初始化数据库连接
       */
      override def open(parameters: Configuration): Unit = {
        //注册驱动
        Class.forName("com.mysql.jdbc.Driver")
        //获取连接
        con = DriverManager.getConnection("jdbc:mysql://master:3306/bigdata?useUnicode=true&characterEncoding=utf8&useSSL=false", "root", "123456")
        //编写插入数据sql
        //replace:如果不存在就插入,存在就替换
        stat = con.prepareStatement("replace into gender values(?,?)")
      }

      /**
       * 任务关闭的时候执行,一般用于回收资源
       */
      override def close(): Unit = {
        stat.close()
        con.close()
      }

      /**
       * 重写invoke方法
       * 每一条数据会执行一次
       * 使用jdbc将数据保存到mysql中
       *
       * @param value   : 一行数据
       * @param context : 上下文对象
       */
      override def invoke(value: (String, Int), context: SinkFunction.Context): Unit = {
        stat.setString(1, value._1)
        stat.setInt(2, value._2)

        //执行插入
        stat.execute()
      }
    })

    env.execute()
  }

}

四、从MySQL到MySQL中

package com.shujia.flink.homework

import org.apache.flink.configuration.Configuration
import org.apache.flink.streaming.api.functions.sink.{RichSinkFunction, SinkFunction}
import org.apache.flink.streaming.api.functions.source.SourceFunction
import org.apache.flink.streaming.api.scala._
import java.sql.{Connection, DriverManager, PreparedStatement, ResultSet}

object Mysql2Mysql {
  def main(args: Array[String]): Unit = {
    /**
     * 创建flink环境
     */
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

    /**
     * 从mysql数据库中读取数据
     */
    val mysqlDS: DataStream[String] = env.addSource(new SourceFunction[String] {
      override def run(sourceContext: SourceFunction.SourceContext[String]): Unit = {
        //注册驱动
        Class.forName("com.mysql.jdbc.Driver")
        //创建连接
        val con: Connection = DriverManager.getConnection("jdbc:mysql://master:3306/student?useUnicode=true&characterEncoding=utf8&useSSL=false", "root", "123456")
        //编写查询数据的sql
        val stat: PreparedStatement = con.prepareStatement("select * from student")
        //执行查询
        val resultSet: ResultSet = stat.executeQuery()
        //解析数据
        while (resultSet.next()) {
          val id: Int = resultSet.getInt("id")
          val name: String = resultSet.getString("name")
          val age: Int = resultSet.getInt("age")
          val gender: String = resultSet.getString("gender")
          val clazz: String = resultSet.getString("clazz")

          //将每一条数据发送到下游
          sourceContext.collect(s"$id\t$name\t$age\t$gender\t$clazz")
        }
        //关闭链接
        stat.close()
        con.close()
      }

      override def cancel(): Unit = {}
    })

    /**
     * 处理数据,求出每个班级人数
     */
    val clazzDS: DataStream[(String, Int)] = mysqlDS
      .map(_.split("\t")(4))
      .map((_, 1))
      .keyBy(_._1)
      .sum(1)

    //    clazzDS.print()

    /**
     * 将统计好的结果保存到MySQL中
     */
    clazzDS.addSink(new RichSinkFunction[(String, Int)] {
      var con: Connection = _
      var stat: PreparedStatement = _

      override def open(parameters: Configuration): Unit = {
        //1、加载驱动
        Class.forName("com.mysql.jdbc.Driver")
        //注册连接
        con = DriverManager.getConnection("jdbc:mysql://master:3306/student?useUnicode=true&characterEncoding=UTF-8", "root", "123456")
        //编写插入数据的sql
        stat = con.prepareStatement("replace into clazz_count(clazz,num) values(?,?)")
      }

      override def close(): Unit = {
        stat.close()
        con.close()
      }

      override def invoke(value: (String, Int), context: SinkFunction.Context): Unit = {
        stat.setString(1, value._1)
        stat.setInt(2, value._2)

        //执行插入数据
        stat.execute()
      }
    })

    env.execute()

  }

}