对于以定投指数的方式理财的朋友,最需要关注的指标便是各个指数的估值,在指数低估时买入,高估时卖出,那如何制作一张估值图来跟踪指数的估值情况呢?本文就从0到1介绍如何用Matplotlib画一张漂亮的指数估值图。

准备数据

首先,准备我们需要的数据,一般来说,经历了一轮牛熊周期的历史估值更具比较意义,所以,这里以上证指数2013年到目前为止的行情数据为例进行演示,同时,采用滚动市盈率为估值指标。数据来源为tushare。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tushare as ts
from datetime import *
%matplotlib inline
#设置显示中文
plt.rcParams['font.sans-serif'] = 'FangSong'

pro = ts.pro_api()

index_df = pro.index_dailybasic(ts_code = "000001.SH",start_date = "20130101",
                                end_date = "20200311",fields="trade_date,pe_ttm")
index_df.sort_values(by="trade_date",inplace=True)
x = pd.to_datetime(index_df["trade_date"]).values
y = index_df["pe_ttm"].values

根据得到的数据,可以绘制出上证指数市盈率的走势图:

fig,ax = plt.subplots(figsize=(12,8))
ax.plot(x,y)

python金融估值 python 基金估值_估值

接下来便需要根据一定的规则,将估值划分为高估区、正常区以及低估区。

估值区间划分

参照比较常见的划分方法,本文将大于80%分位数的区域视为高估区间,低于20%分位数的区域视为低估区间,位于两者之间的,则为正常区间。下面的代码算出了这几个关键数据点

max = np.max(y)
pe_80 = np.percentile(y,80)
pe_20 = np.percentile(y,20)
min = np.min(y)
now = y[-1]   #为了后续标出当日估值

绘图

根据分割的数据点,就可以进行绘图了,这里主要用到fill_between函数绘制各区域的颜色分割,将高估区域用红色块填充,正常区间用黄色块填充,低估值区域用绿色块填充。同时为了显示效果,将图的上下限分别设置为最大值+1和最小值-1。

fig,ax = plt.subplots(figsize=(12,8))
ax.plot(x,y,linewidth=3)
ax.fill_between(x,min-1,pe_20,facecolor = "#00ff80",alpha=0.2)
ax.fill_between(x,pe_20,pe_80,facecolor = "#ffff4d",alpha=0.2)
ax.fill_between(x,pe_80,max+1,facecolor = "#ff69b4",alpha=0.2)



python金融估值 python 基金估值_服务器_02

整个图形的大致轮廓已经出来了,为了更好的显示效果,接下来还需要对图形进行微调。比如:

  • 去掉坐标轴的刻度并将相应字体放大-->ax.tick_params()
  • 去掉图形与坐标轴之间的空白-->ax.margins()
  • 在图中标出当日市盈率-->ax.text()
  • 将图形的方框去掉-->plt.box()
  • 为图标添加标题-->plt.title

所以,在之前代码的基础上,加入下面的调整代码,就可以得到最终的成品图

fig,ax = plt.subplots(figsize=(12,8))
ax.plot(x,y,linewidth=3)
ax.fill_between(x,min-1,pe_20,facecolor = "#00ff80",alpha=0.2)
ax.fill_between(x,pe_20,pe_80,facecolor = "#ffff4d",alpha=0.2)
ax.fill_between(x,pe_80,max+1,facecolor = "#ff69b4",alpha=0.2)
ax.tick_params(axis='both', which='both',length=0)
ax.tick_params(axis='both', which='major', labelsize=16)
ax.margins(0.01,0)
ax.text(0.75,0.9,"市盈率 = {}".format(now),transform=ax.transAxes,fontdict={'size':18})
plt.xticks(rotation=45)
plt.box(False)
plt.title("上证指数估值图",fontdict={'size':24})



python金融估值 python 基金估值_数据_03

函数封装

进一步地,为了将上面的代码复用,可以将所有绘图的代码封装成函数,之后只需要输入相应的指数代码(可以值宽基指数、行业板块指数)和时间范围,即可快速生成一张估值图。

def pe_plot(ts_code = "",name="",period=5):
    #准备数据
    now = datetime.now()
    end_date = str(now.date()).replace("-","")
    start_date = str(now.year-period)+end_date[4:]
    index_df = pro.index_dailybasic(ts_code = ts_code,start_date = start_date,
                                    end_date = end_date,fields="trade_date,pe_ttm")
    index_df.sort_values(by="trade_date",inplace=True)
    x = pd.to_datetime(index_df["trade_date"]).values
    y = index_df["pe_ttm"].values

    #划定分割范围
    max = np.max(y)
    pe_80 = np.percentile(y,80)
    pe_20 = np.percentile(y,20)
    min = np.min(y)
    now = y[-1]

    #绘图
    fig,ax = plt.subplots(figsize=(12,8))
    ax.plot(x,y,linewidth=3)
    ax.fill_between(x,min-1,pe_20,facecolor = "#00ff80",alpha=0.2)
    ax.fill_between(x,pe_20,pe_80,facecolor = "#ffff4d",alpha=0.2)
    ax.fill_between(x,pe_80,max+1,facecolor = "#ff69b4",alpha=0.2)
    ax.tick_params(axis='both', which='both',length=0)
    ax.tick_params(axis='both', which='major', labelsize=16)
    ax.margins(0.01,0)
    ax.text(0.75,0.9,"市盈率 = {}".format(now),
            transform=ax.transAxes,fontdict={'size':18})
    plt.xticks(rotation=45)
    plt.box(False)
    plt.title("{}估值图".format(name),fontdict={'size':24})
    plt.show()

比如,生成一张创业板指数近5年的估值图

pe_plot(ts_code="399006.SZ",name="创业板指",period=5)

python金融估值 python 基金估值_估值_04