最小二乘法的数学原理推导(机器学习线性回归)

——燕江依

对于简单线性回归问题,即数据特征只有一个的基础数据集,要使得损失函数(这里是指真值与预测值之间误差的平方)最小,从而求得最优化的参数a和b,这个具体方法称为最小二乘法,利用最小二乘法,可以得到最佳的参数a和b的计算式,如下所示:

最小二乘法 java 最小二乘法求a,b的公式_最小二乘法

 

最小二乘法 java 最小二乘法求a,b的公式_线性回归_02

而对于以上的数学原理,最优化与凸优化原理均起着非常关键的作用,下面推导最小二乘法中的a、b参数,其具体数学推导过程如下:

 

最小二乘法 java 最小二乘法求a,b的公式_最优化_03

第一步:首先对b进行求导:

最小二乘法 java 最小二乘法求a,b的公式_最小二乘法_04

 

最小二乘法 java 最小二乘法求a,b的公式_机器学习数学原理_05

第二步:继续对a进行求导:

 

 

最小二乘法 java 最小二乘法求a,b的公式_最小二乘法 java_06

最小二乘法 java 最小二乘法求a,b的公式_机器学习数学原理_07

最小二乘法 java 最小二乘法求a,b的公式_机器学习数学原理_08

 

最终求得最小二乘法中的a和b的具体计算公式如下所示:

最小二乘法 java 最小二乘法求a,b的公式_线性回归_09