目录:

  • 一、设计思路-整体框架:
  • 二、具体框架搭建
  • 1.公共方法—common
  • 1.1.yaml_util.py
  • 1.2.excel_util.py
  • 1.4、text_ util.py
  • 1.5、exception_util.py
  • 1.6、email_util.py
  • 1.7、log_util.py
  • 1.8、request_util.py
  • 1.9、extract_util.py,实现数据驱动—yaml热处理
  • 2.测试数据—data
  • 3.输出文件—output
  • 4.运行用例—testcase
  • 5.前后置—conftest.py结合pytest.fixture()
  • 6.运行用例—all.py
  • 三、设计缺陷及解决方案
  • 四、结合jenkins实现持续集成
  • 1.jenkins的安装
  • 配置jenkins



目标:最终完成一个用jenkins集成或用django,达到一个自由灵活可复用的接口自动化测试框架

github地址(可直接clone到本地):git clone https://github.com/529851983/dongshuai.git

一、设计思路-整体框架:

接口自动化测试之框架搭建步骤——思路整理

1.先搭建框架主干

config:存放配置文件,如ini文件,可以用来保存配置各个环境的地址

output:用来存放测试报告、日志等

common:公共的方法,如,封装yaml操作相关的方法、excel相关操作方法等

testcase:运行用例的脚本

data:存放测试用例excel表、和转化为yaml格式的测试用例

2.选用合适的单元测试框架(这个用pytest做吧),··················

3.补充完善各个模块

4.写测试用例,用实际的接口进行测试

python接口自动化框架有哪些 python接口自动化框架pytest_单元测试

二、具体框架搭建

1.公共方法—common

1.1.yaml_util.py

  • 封装操作yaml的方法,包括读、写、清空等操作

知识点:

  1. yaml反序列化:ymal.load()
  2. yaml序列化:yaml.dump()
  3. 生成后的yaml中文乱码解决:allow_unicode=True
  4. 生成后的yaml顺序不是原来的解决:sort_keys=False
@exception
def read_yaml(yaml_file):
    """读取yaml"""
    with open(yaml_file, 'r', encoding='utf-8') as f:
        value = yaml.load(f, Loader=yaml.FullLoader)
        print(value)
        return value

@exception
def write_yaml(data, yaml_file):
    """写yaml"""
    with open(yaml_file, 'w') as f:
        yaml.dump(data=data, stream=f, allow_unicode=True, sort_keys=False, default_flow_style=False)

@exception
def truncate_yaml(yaml_file):
    """清空yaml"""
    with open(yaml_file, 'w') as f:
        f.truncate()

@exception
def handler():
    """根据读取excel数据,生成yaml的测试用例数据"""
    file = "%s/data/case_excel/接口测试框架实践用例.xlsx" % base_dir
    value = ExcelUtil(file).read_excel()
    sheet_names = ExcelUtil(file).wb.sheetnames
    n = 0
    for sheet in sheet_names:
        data = value[n]
        file = '%s/data/case_yaml/%s.yaml' % (base_dir, sheet)
        write_yaml(data=data, yaml_file=file)
        n += 1

1.2.excel_util.py

  • 封装操作excel的方法,主要作用2个:
  • 1、用于数据处理,读取excel中用例后返回规定的字典,便于生成yaml
  • 2、将运行结果数据存入excel中对应列
from openpyxl import Workbook,load_workbook
from common.exception_utils import exception_utils


@exception_utils
class ExcelUtil(object):

    def __init__(self, excel_path):
        self.wb = load_workbook(excel_path)
        self.template = """{"id":0,"url":"","case_name":"","header":"","method":"","body":"",
        "expect":"","actual":"","valiadate":""},"""  # 这个是写入用例的模板

    @exception_utils
    def read_excel(self):
        """读取excel,处理数据,并返回一个格式处理后的字典"""
        value = []
        for sheetname in self.wb.sheetnames:
            ws = self.wb[sheetname]
            cases_num = len(list(ws.values)) - 1  # 一个sheet中用例的数量
            case_list = list(ws.values)
            case_list.pop(0)  # 去掉表头
            cases_template = self.template * cases_num
            cases_template_list = eval("[" + cases_template[:-1] + "]")   # 与用例相同长度的模板

            for i in range(len(case_list)):  # i:第i个用例
                # 每个用例中字段是9个,因此这样写
                cases_template_list[i]['id'] = case_list[i][0]
                cases_template_list[i]['url'] = case_list[i][1]
                cases_template_list[i]['case_name'] = case_list[i][2]
                cases_template_list[i]['header'] = case_list[i][3]
                cases_template_list[i]['method'] = case_list[i][4]
                cases_template_list[i]['body'] = case_list[i][5]
                cases_template_list[i]['expect'] = case_list[i][6]
                cases_template_list[i]['actual'] = case_list[i][7]
                cases_template_list[i]['valiadate'] = case_list[i][8]

            value.append({"cases": cases_template_list})

        return value

    @exception_utils
    def write_excel(self):
        """运行结果写入excel"""
        l_reponse, l_ispass = read_txt_handel()
        print(l_reponse.__len__())
        print(l_ispass.__len__())

        i = 0
        j = 0
        for sheetname in self.wb.sheetnames:
            ws = self.wb[sheetname]
            # 实际结果列
            for row in ws.iter_rows(min_row=2, max_row=ws.max_row, max_col=8, min_col=8):
                for cell in row:
                    cell.value = l_reponse[i]
                    # print("resp:%s" % i, cell.value)
                    i += 1
            # 是否通过列
            for row in ws.iter_rows(min_row=2, max_row=ws.max_row, max_col=9, min_col=9):
                for cell in row:
                    cell.value = l_ispass[j]
                    # print("ispass%s:" % j, cell.value)
                    j += 1

        save_path = "%s/output/run_result_excel/运行结果_%s.xlsx" % (self.base_dir, time.strftime("%Y%m%d_%H:%M:%S"))
        self.wb.save(save_path)

1.4、text_ util.py

  1. 封装读、写、清空txt文件的方法
  2. 封装处理用例运行结果数据,返回规定格式的数据的方法
from pathlib import Path

base_dir = Path(__file__).parent.parent


def read_txt(text_file):
    """读取txt文件"""
    with open(text_file, 'r', encoding='utf-8') as f:
        return f.read()


def write_txt(text_file, data):
    """写入txt文件"""
    with open(text_file, 'a') as f:
        f.write(data)


def truncate_txt(text_file):
    """清空txt文件"""
    with open(text_file, 'w') as f:
        f.truncate()


def read_txt_handel(text_file='%s/data/run_result.txt' % base_dir):
    """将保存运行结果的txt数据,处理成想要的格式"""
    value = read_txt(text_file=text_file)
    l_reponse = []
    l_ispass = []
    for i in value[0:-1].split("|"):
        l_reponse.append(i.split('__')[0])
        l_ispass.append(i.split('__')[1])
    # print(l_reponse)
    # print(l_ispass)

    return l_reponse, l_ispass


if __name__ == '__main__':
    read_txt_handel()

1.5、exception_util.py

封装处理异常的装饰器

import traceback
from functools import wraps


def exception_utils(func):
    """处理异常的装饰器"""
    @wraps(func)
    def wraped(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except Exception as e:
            print('出现异常,error is %s\n%s' % (e, traceback.extract_stack()))

    return wraped

1.6、email_util.py

封装发送邮件的方法

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.application import MIMEApplication
from common.text_util import base_dir


def email_util(att=None, content=None, subject=None,):
    """发送邮件的工具方法"""
    username = '52985****@qq.com'
    password = 'segkbtnjeimd****'
    receiver = '1853451****@163.com'  # 接收邮箱
    content = content

    if att is None:  # 不带附件的
        message = MIMEText(content)
        message['subject'] = subject
        message['from'] = username
        message['to'] = receiver
    else:  # 带附件发送
        message = MIMEMultipart()
        txt = MIMEText(content, _charset='utf-8', _subtype="html")
        part = MIMEApplication(open('%s/%s' % (base_dir, att), 'rb').read())
        part.add_header('Content-Disposition', 'attachment', filename=att.split('\\')[-1])
        message['subject'] = subject
        message['from'] = username
        message['to'] = receiver
        message.attach(txt)
        message.attach(part)

    # 登录smtp服务器
    smtpserver = 'smtp.qq.com'
    smtp = smtplib.SMTP()
    smtp.connect(smtpserver)
    smtp.login(username, password)
    smtp.sendmail(username, receiver, message.as_string())
    smtp.quit()


if __name__ == '__main__':
    email_util(content="<i>测试发送邮件</i>", subject="测试发送邮件-主题", att='output/run_result_excel/吃素.jpg')

1.7、log_util.py

封装日志处理的方法(日志这个懒得写了,直接网上copy过来改改用)

import logging
import logging.handlers
import os
import time
from common.text_util import base_dir


class LogUtil(object):
    def __init__(self):
        self.logger = logging.getLogger("")
        # 创建文件目录
        logs_dir = "%s/output/logs" % base_dir
        if os.path.exists(logs_dir) and os.path.isdir(logs_dir):
            pass
        else:
            os.mkdir(logs_dir)
        # 修改log保存位置
        timestamp = time.strftime("%Y%m%d", time.localtime())
        logfilename = '%sOkayProject.txt' % timestamp
        logfilepath = os.path.join(logs_dir, logfilename)
        rotatingFileHandler = logging.handlers.RotatingFileHandler(filename=logfilepath,
                                                                   maxBytes=1024 * 1024 * 50,
                                                                   backupCount=5)
        # 设置输出格式
        formatter = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s', '%Y-%m-%d %H:%M:%S')
        rotatingFileHandler.setFormatter(formatter)
        # 控制台句柄
        console = logging.StreamHandler()
        console.setLevel(logging.NOTSET)
        console.setFormatter(formatter)
        # 添加内容到日志句柄中
        self.logger.addHandler(rotatingFileHandler)
        self.logger.addHandler(console)
        self.logger.setLevel(logging.INFO)

    def info(self, message):
        self.logger.info(message)

    def debug(self, message):
        self.logger.debug(message)

    def warning(self, message):
        self.logger.warning(message)

    def error(self, message):
        self.logger.error(message)

调用日志方法:

# 添加日志
    log_text = "name:%s,url:%s,reponse:%s" % (name, url, rep)
    LogUtil().info(log_text)

1.8、request_util.py

  1. 封装运行用例时,发送请求的方法
  2. 将运行结果写入.txt文件(也可以直接写redis中)
import json
import requests
from common.text_util import *


def request_utl(method, url, headers, payloads, params=None, expect=None, run_result_txt=None):
    if method == 'get':
        res = requests.get(url=url, headers=headers, params=params)
        assertion = expect in res.text  # 断言依据
        if assertion:
            assert assertion
            # 将运行结果写入txt文件保存
            write_txt(text_file=run_result_txt, data=res.text+"__pass|")  # 用"__"符号间隔
        else:
            assert assertion
            write_txt(text_file=run_result_txt, data=res.text+"__fail|")

    elif method == 'post':
        res = requests.post(url=url, headers=headers, data=payloads)
        assertion = expect in res.text  # 断言依据
        print("断言是:", assertion)
        if assertion:
            write_txt(text_file=run_result_txt, data=res.text+"__pass|")
        else:
            write_txt(text_file=run_result_txt, data=res.text+"__fail|")

        assert assertion

1.9、extract_util.py,实现数据驱动—yaml热处理

  1. 将变量保存到extract.yaml中
  2. 在用例yaml中用${}引用的变量
  3. 用例运行时,调封装好的方法,先进行变量替换,进行热处理

知识点:

  1. re库:待补充re.findall()、re.sub
import re
from common.exception_utils import exception_utils
from common.text_util import *
from common.yaml_util import *


@exception_utils
def extract_util(case_file, extract_yamlfile="%s/data/data_driven_yaml/extract.yaml" % base_dir,
                 default_yamlfile="%s/data/data_driven_yaml/default_variable.yaml" % base_dir):
    """
    数据关联的公共方法
    思路:
    1.运行用例前,检查用例yaml中是否有${}
    2.有,则检查${}中的变量是否存在于extract.yaml中
    3.有,则替换;无,则不变,或设置默认值
    4.内存中覆盖yaml中读取的值
    5.再进行数据驱动

    返回——>替换${变量}后的数据
    """

    # 运行用例
    text_file = '%s/data/extract_replace.txt' % base_dir

    # 运行前先清空extract.txt
    # truncate_txt(text_file)

    # 1.返回全部匹配到的结果,且去重
    value_cases = str(read_yaml(case_file))
    extract_txt(text_file='%s/data/extract_replace.txt' % base_dir, data=value_cases)  # 一.写入txt
    p = r'\$\{(.*?)\}'
    match_list = list(set(re.findall(p, value_cases)))

    # 2.提取字段的key列表(关联变量 和 用户默认变量,将他们合并)
    global value_extract_keys, value_extract
    if read_yaml(extract_yamlfile):
        value_extract = read_yaml(extract_yamlfile)
        print(value_extract)
        vlaue_default_variable = read_yaml(default_yamlfile)
        value_extract.update(vlaue_default_variable)
        value_extract_keys = list(value_extract.keys())
        print(value_extract_keys)
        # print(value_extract)
    else:
        print("extract.yaml文件中没有储存的变量")
        if read_yaml(default_yamlfile):
            vlaue_default_variable = read_yaml(default_yamlfile)
            value_extract_keys = list(vlaue_default_variable.keys())
            print(value_extract_keys)


    """这里有点不太会,只会用比较笨的办法,每次结果存入txt文件,然后再每次读取txt文件"""
    # 3.动态替换${}
    for m in match_list:
        if m in value_extract_keys:
            p1 = r'\${%s}' % m
            replace = re.sub(p1, value_extract[m], read_txt(text_file))  # 替换${}中内容
            extract_txt(text_file=text_file, data=replace)  # 三.每次覆盖动态写入
        else:
            print("关联数据中,没有该key:%s" % m)

    return eval(read_txt(text_file))['cases']


def save_variable(key, value):
    """保存变量到extract.yaml文件,需要模块运行前先进行清空"""
    # 1.数据按格式追加写入extract_save.txt文件
    file = '%s/data/extract_save.txt' % base_dir
    extract_yamlfile = "%s/data/data_driven_yaml/extract.yaml" % base_dir
    write_txt(file, '"%s":"%s",' % (key, value))
    variable = eval("{%s}" % read_txt(file)[0:-1])
    write_yaml(data=variable, yaml_file=extract_yamlfile)

用例yaml中引用变量如下:

python接口自动化框架有哪些 python接口自动化框架pytest_python接口自动化框架有哪些_02

2.测试数据—data

python接口自动化框架有哪些 python接口自动化框架pytest_python接口自动化框架有哪些_03


excel编写接口测试用例:

python接口自动化框架有哪些 python接口自动化框架pytest_python接口自动化框架有哪些_04

3.输出文件—output

python接口自动化框架有哪些 python接口自动化框架pytest_python_05


运行结果自动写入接口测试用例中:

python接口自动化框架有哪些 python接口自动化框架pytest_单元测试_06

4.运行用例—testcase

拿登录举例:

  1. 用pytest.mark.parametrize()数据驱动 和 yaml结合生成测试用例
  2. 用封装好的请求方法,直接传参调用
import pytest
from common.request_util import request_utl
from common.text_util import *
from common.yaml_util import *
import json


# @pytest.mark.skip
@pytest.mark.parametrize('args', read_yaml('%s/data/case_yaml/1.登录.yaml' % base_dir)['cases'])
def test_login(args):
    """登录接口,获取token"""
    # 
    url = args['url']
    headers = eval(args['header'])
    payloads = json.dumps(eval(args['body']))
    params = eval(args['body'])
    method = args["method"]
    run_result_txt = '%s/data/run_result.txt' % base_dir  # 运行结果保存到txt文件中
    expect = args['expect']  # 断言依据
    # 二、调封装的请求方法
    request_utl(method, url, headers, payloads=payloads, params=params, expect=expect, run_result_txt=run_result_txt)

5.前后置—conftest.py结合pytest.fixture()

前置内容:

  1. 清空关联数据文件yaml文件
  2. 登录获取token,写入yaml文件

后置内容:

import pytest
from common.text_util import *

@pytest.fixture(scope="function")
def login():
    print("用例运行前,先登录")


@pytest.fixture(scope='session', autouse=True)
def truncate():
    """运行用例前清空data下的相关文件"""
    print("\n用例运行前操作:")
    print("1.清空run_result.txt文件")
    truncate_txt("%s/data/run_result.txt" % base_dir)
    print("2.清空extract_save.txt文件")
    truncate_txt("%s/data/extract_save.txt" % base_dir)
    print("3.清空extract_replace.txt文件")
    truncate_txt("%s/data/extract_replace.txt" % base_dir)
    print("4.清空extract.ymal文件")
    truncate_txt("%s/data/data_driven_yaml/extract.yaml" % base_dir)
    yield
    print("用例运行完毕,这是后置")

6.运行用例—all.py

import os
import time
from common.text_util import *


def main():
    # 运行用例的主入口
    truncate_txt("%s/data/run_result.txt" % base_dir)
    tempdir_path = "output/reports/temp/%stemp" % time.strftime("%y%m%d-%H%M%S")
    os.system("pytest --alluredir %s" % tempdir_path)
    os.system("allure generate %s"
              " -o output/reports/allure_report --clean" % tempdir_path)


if __name__ == '__main__':
    main()

三、设计缺陷及解决方案


四、结合jenkins实现持续集成

1.jenkins的安装

我是直接用docker拉取jenkins的镜像,进行在本地安装jenkins(docker安装就不写了)

拉取jenkins命令:docker pull jenkins/jenkins

启动镜像命令:docker run -d --name myjenkins -p 8080:8080 -p 50000:50000 -v /var/jenkins_node:/var/jenkins_home jenkins/jenkins

直接浏览器访问:127.0.0.1:8080

python接口自动化框架有哪些 python接口自动化框架pytest_python接口自动化框架有哪些_07

配置jenkins

待完善