1.同线性代数中矩阵乘法的定义。np.dot(A, B)表示:

对二维矩阵,计算真正意义上的矩阵乘积。
对于一维矩阵,计算两者的内积。
2.代码

【code】

复制代码

import numpy as np

2-D array: 2 x 3

two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])

2-D array: 3 x 2

two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]])
two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two)
 print(‘two_multi_res: %s’ %(two_multi_res))

1-D array

one_dim_vec_one = np.array([1, 2, 3])
 one_dim_vec_two = np.array([4, 5, 6])
 one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two)
 print(‘one_result_res: %s’ %(one_result_res))


复制代码

【result】
two_multi_res: [[22 28]
 [49 64]]
 one_result_res: 32

二. np.multiply()或 *
1.在Python中,实现对应元素相乘(element-wise product),有2种方式,

一个是np.multiply()
另外一个是 *
2.代码

【code】

复制代码

import numpy as np

2-D array: 2 x 3

two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])
 another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]])

对应元素相乘 element-wise product

element_wise = two_dim_matrix_one * another_two_dim_matrix_one
 print(‘element wise product: %s’ %(element_wise))

对应元素相乘 element-wise product

element_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one)
 print(‘element wise product: %s’ % (element_wise_2))


复制代码

【result】
element wise product: [[ 7 16 27]
 [16 35 6]]
 element wise product: [[ 7 16 27]
 [16 35 6]]