Flume

1. 前言

是由cloudera软件公司产出的可分布式日志收集系统,后与2009年被捐赠了apache软件基金会,为hadoop相关组件之一。尤其近几年随着flume的不断被完善以及升级版本的逐一推出,特别是flume-ng;同时flume内部的各种组件不断丰富,用户在开发的过程中使用的便利性得到很大的改善,现已成为apache top项目之一.

2. 概述

2.1. 什么是flume?
http://flume.apache.org/index.html

是一个从可以收集例如日志,事件等数据资源,并将这些数量庞大的数据从各项数据资源中集中起来存储的工具/服务,或者数集中机制。flume具有高可用,分布式,配置工具,其设计的原理也是基于将数据流,如日志数据从各种网站服务器上汇集起来存储到HDFS,HBase等集中存储器中。其结构如下图所示:

flume采集flink日志_HDFS

2.2. Flume特性

  • Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
  • Flume可以采集文件,socket数据包、文件、文件夹、kafka等各种形式源数据,又可以将采集到的数据(下沉sink)输出到HDFS、hbase、hive、kafka等众多外部存储系统中
  • 一般的采集需求,通过对flume的简单配置即可实现
  • Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景

3. Flume原理

3.1. Flume组件详解

对于每一个Agent来说,它就是一共独立的守护进程(JVM),它从客户端接收数据,如下图所示flume的基本模型

flume采集flink日志_flume采集flink日志_02

1、 Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成

2、 每一个agent相当于一个数据(被封装成Event对象)传递员,内部有三个组件:

a) Source:采集组件,用于跟数据源对接,以获取数据

b) Sink:下沉组件,用于往下一级agent传递数据或者往最终存储系统传递数据

c) Channel:传输通道组件,用于从source将数据传递到sink

flume采集flink日志_hdfs_03

 首先来看一下flume官网中对Event的定义

flume采集flink日志_flume采集flink日志_04

 

  一行文本内容会被反序列化成一个event(序列化是将对象状态转换为可保持或传输的格式的过程。与序列化相对的是反序列化,它将流转换为对象。这两个过程结合起来,可以轻松地存储和传输数据),event的最大定义为2048字节,超过,则会切割,剩下的会被放到下一个event中,默认编码是UTF-8。

3.2. Flume采集结构图 

3.2.1. 简单结构

单个agent采集数据

flume采集flink日志_大数据_05

3.2.2. 复杂结构

多级agent之间串联

 

flume采集flink日志_ci_06

4. 实战案例

4.1. Flume的安装部署

1、Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境

上传安装包到数据源所在节点上

然后解压

然后进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME

 

2、根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)

3、指定采集方案配置文件,在相应的节点上启动flume agent

 

先用一个最简单的例子来测试一下程序环境是否正常

flume采集flink日志_ci_07

1、先在flume的conf目录下新建一个配置文件(采集方案)

vi   netcat-logger.properties




flume采集flink日志_flume采集flink日志_08

flume采集flink日志_ci_09

# 定义这个agent中各组件的名字
a1.sources = r1
a1.sinks = k1
a1.channels = c1

# 描述和配置source组件:r1
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444

# 描述和配置sink组件:k1
a1.sinks.k1.type = logger

# 描述和配置channel组件,此处使用是内存缓存的方式
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# 描述和配置source  channel   sink之间的连接关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1


View Code


2、启动agent去采集数据

bin/bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console

-c conf   指定flume自身的配置文件所在目录

-f conf/netcat-logger.conf  指定我们所描述的采集方案

-n a1  指定我们这个agent的名字

3、测试

先要往agent的source所监听的端口上发送数据,让agent有数据可采

随便在一个能跟agent节点联网的机器上

telnet anget-hostname  port   (telnet localhost 44444)

flume采集flink日志_HDFS_10

4.2. 采集案例

4.2.1. 采集目录到HDFS

结构示意图:

 

flume采集flink日志_hdfs_11

采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去

根据需求,首先定义以下3大要素

l 数据源组件,即source ——监控文件目录 :  spooldir

spooldir特性:

、监视一个目录,只要目录中出现新文件,就会采集文件中的内容

、采集完成的文件,会被agent自动添加一个后缀:COMPLETED

、所监视的目录中不允许重复出现相同文件名的文件

l 下沉组件,即sink——HDFS文件系统  :  hdfs sink

l 通道组件,即channel——可用file channel 也可以用内存channel

 

配置文件编写:




flume采集flink日志_flume采集flink日志_08

flume采集flink日志_ci_09

#定义三大组件的名称
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1

# 配置source组件
agent1.sources.source1.type = spooldir
agent1.sources.source1.spoolDir = /home/hadoop/logs/
agent1.sources.source1.fileHeader = false

#配置拦截器
agent1.sources.source1.interceptors = i1
agent1.sources.source1.interceptors.i1.type = host
agent1.sources.source1.interceptors.i1.hostHeader = hostname

# 配置sink组件
agent1.sinks.sink1.type = hdfs
agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
agent1.sinks.sink1.hdfs.rollSize = 102400
agent1.sinks.sink1.hdfs.rollCount = 1000000
agent1.sinks.sink1.hdfs.rollInterval = 60
#agent1.sinks.sink1.hdfs.round = true
#agent1.sinks.sink1.hdfs.roundValue = 10
#agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
# Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600

# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1


View Code


Channel参数解释:

capacity:默认该通道中最大的可以存储的event数量

trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量

keep-alive:event添加到通道中或者移出的允许时间

4.2.2. 采集文件到HDFS

采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs

 

根据需求,首先定义以下3大要素

  • 采集源,即source——监控文件内容更新 :  exec  ‘tail -F file’
  • 下沉目标,即sink——HDFS文件系统  :  hdfs sink
  • Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel

配置文件编写:




flume采集flink日志_flume采集flink日志_08

flume采集flink日志_ci_09

agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1

# Describe/configure tail -F source1
agent1.sources.source1.type = exec
agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log
agent1.sources.source1.channels = channel1

#configure host for source
agent1.sources.source1.interceptors = i1
agent1.sources.source1.interceptors.i1.type = host
agent1.sources.source1.interceptors.i1.hostHeader = hostname

# Describe sink1
agent1.sinks.sink1.type = hdfs
#a1.sinks.k1.channel = c1
agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
agent1.sinks.sink1.hdfs.rollSize = 102400
agent1.sinks.sink1.hdfs.rollCount = 1000000
agent1.sinks.sink1.hdfs.rollInterval = 60
agent1.sinks.sink1.hdfs.round = true
agent1.sinks.sink1.hdfs.roundValue = 10
agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true

# Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600

# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1


View Code


3、两个agent级联

 

flume采集flink日志_大数据_16

4.3. 更多source和sink组件

Flume支持众多的source和sink类型,详细手册可参考官方文档

http://flume.apache.org/FlumeUserGuide.html

4.4.  HA Flume配置案例

在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示:

flume采集flink日志_flume采集flink日志_17

  图中,我们可以看出,Flume的存储可以支持多种,这里只列举了HDFS和Kafka(如:存储最新的一周日志,并给Spark Streaming系统提供实时日志流。

4.4.1. 角色分配

的Agent和Collector分布如下表所示:

 

名称 

HOST

角色

Agent1

mini1

Web Server

Agent2

mini2

Web Server

Agent3

mini3

Web Server

Collector1

mini4

AgentMstr1

Collector2

mini5

AgentMstr2

 

图中所示,Agent1,Agent2,Agent3数据分别流入到Collector1和Collector2,Flume NG本身提供了Failover机制,可以自动切换和恢复。在上图中,有3个产生日志服务器分布在不同的机房,要把所有的日志都收集到一个集群中存储。下面我们开发配置Flume NG集群。

4.4.2. 配置

在下面单点Flume中,基本配置都完成了,我们只需要新添加两个配置文件,它们是agent.properties和collector.properties,其配置内容如下所示:

1、agent配置

 

vi conf/agent.properties

 




flume采集flink日志_flume采集flink日志_08

flume采集flink日志_ci_09

#agent1 name
agent1.channels = c1
agent1.sources = r1
agent1.sinks = k1 k2

#set gruop
agent1.sinkgroups = g1

#set channel
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1000
agent1.channels.c1.transactionCapacity = 100

agent1.sources.r1.channels = c1
agent1.sources.r1.type = exec
agent1.sources.r1.command = tail -F /root/log/test.log

agent1.sources.r1.interceptors = i1 i2
agent1.sources.r1.interceptors.i1.type = static
agent1.sources.r1.interceptors.i1.key = Type
agent1.sources.r1.interceptors.i1.value = LOGIN
agent1.sources.r1.interceptors.i2.type = timestamp

# set sink1
agent1.sinks.k1.channel = c1
agent1.sinks.k1.type = avro
agent1.sinks.k1.hostname = mini2
agent1.sinks.k1.port = 52020

# set sink2
agent1.sinks.k2.channel = c1
agent1.sinks.k2.type = avro
agent1.sinks.k2.hostname = mini3
agent1.sinks.k2.port = 52020

#set sink group
agent1.sinkgroups.g1.sinks = k1 k2

#set failover
agent1.sinkgroups.g1.processor.type = failover
agent1.sinkgroups.g1.processor.priority.k1 = 10
agent1.sinkgroups.g1.processor.priority.k2 = 1
agent1.sinkgroups.g1.processor.maxpenalty = 10000


View Code


 启动命令:



bin/flume-ng agent -n agent1 -c conf -f conf/agent.properties -Dflume.root.logger=DEBUG,console



2、collector配置

vi collector.properties 

 




flume采集flink日志_flume采集flink日志_08

flume采集flink日志_ci_09

#set Agent name
a1.sources = r1
a1.channels = c1
a1.sinks = k1

#set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# other node,nna to nns
a1.sources.r1.type = avro
a1.sources.r1.bind = mini2
a1.sources.r1.port = 52020
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = Collector
a1.sources.r1.interceptors.i1.value = mini2
a1.sources.r1.channels = c1

#set sink to hdfs
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path=/home/hdfs/flume/logdfs
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=TEXT
a1.sinks.k1.hdfs.rollInterval=10
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d


View Code


 

 在mini3上,需要修改上述配置中的红色字体主机名为mini3

启动命令:



bin/flume-ng agent -n a1 -c conf -f conf/collector.properties -Dflume.root.logger=DEBUG,console



4.4.3. 测试

下面我们来测试下Flume NG集群的高可用(故障转移)。场景如下:我们在Agent1节点上传文件,由于我们配置Collector1的权重比Collector2大,所以 Collector1优先采集并上传到存储系统。然后我们kill掉Collector1,此时有Collector2负责日志的采集上传工作,之后,我 们手动恢复Collector1节点的Flume服务,再次在Agent1上次文件,发现Collector1恢复优先级别的采集工作。具体截图如下所 示:

Collector1优先上传

flume采集flink日志_HDFS_22

HDFS集群中上传的log内容预览

flume采集flink日志_hdfs_23

Collector1宕机,Collector2获取优先上传权限

flume采集flink日志_HDFS_24

重启Collector1服务,Collector1重新获得优先上传的权限