• 继续上一篇——词性标签
  • 运行代码后,发现问题

结果发现,like和hate并没有被加入ret[]。


但是like和hate是我们非常重要的情感关键词。原因是like和hate的词性在字典里居然被算作IN和NN


a_sentence = 'like hate'
token=word_tokenize(a_sentence)
pos_tag(word_tokenize(a_sentence))
[('like', 'IN'), ('hate', 'NN')]
  • 解决方法构思

能想到的解决方法有两种:


  1. 人工找到类似的词性不准从而没有被分入的关键词,把这些关键词添加入content.
  2. 修改pos_tag的字典。

第一种需要的人工量实在太大,但胜在简单,如果是数据量小一点的情况,可以直接用第一种方法。

我在这里因为要处理40000条数据,所以只能用第二种方法。

但是这个字典到底在哪,我在python的lib目录下找了半天源代码都找不到。

只好请问网络。找了一下午中外网站,好不容易找到了一些知识,其中ntlk.org是讲的最清楚的。没有英文基础的建议翻译网页下来看。

http://www.nltk.org/book/ch05.html

http://www.cs.cmu.edu/~ark/TweetNLP/

https://stackoverflow.com/questions/30791194/nltk-get-and-simplify-list-of-tags

https://wenku.baidu.com/view/c63bec3b366baf1ffc4ffe4733687e21af45ffab.html

https://www.jianshu.com/p/22be6550c18b

其中最有用的是的一篇博客,我用斜体做了备注,转载如下:

POS tagging :part-of-speech tagging , or word classes or lexical categories

那么用nltk的工具集的off-the-shelf工具可以简单的对文本进行POS tagging

>>> text = nltk.word_tokenize("And now for something completely different")
>>> nltk.pos_tag(text)
[('And', 'CC'), ('now', 'RB'), ('for', 'IN'), ('something', 'NN'), ('completely', 'RB'), ('different', 'JJ')]

API Document里面是这么介绍这个接口的

Use NLTK's currently recommended part of speech tagger to tag the given list of tokens.

我查了下code,pos_tag load theStandard treebank POS tagger

1.      CC      Coordinating conjunction
2.     CD     Cardinal number
3.     DT     Determiner
4.     EX     Existential there
5.     FW     Foreign word
6.     IN     Preposition or subordinating conjunction
7.     JJ     Adjective
8.     JJR     Adjective, comparative
9.     JJS     Adjective, superlative
10.     LS     List item marker
11.     MD     Modal
12.     NN     Noun, singular or mass
13.     NNS     Noun, plural
14.     NNP     Proper noun, singular
15.     NNPS     Proper noun, plural
16.     PDT     Predeterminer
17.     POS     Possessive ending
18.     PRP     Personal pronoun
19.     PRP$     Possessive pronoun
20.     RB     Adverb
21.     RBR     Adverb, comparative
22.     RBS     Adverb, superlative
23.     RP     Particle
24.     SYM     Symbol
25.     TO     to
26.     UH     Interjection
27.     VB     Verb, base form
28.     VBD     Verb, past tense
29.     VBG     Verb, gerund or present participle
30.     VBN     Verb, past participle
31.     VBP     Verb, non-3rd person singular present
32.     VBZ     Verb, 3rd person singular present
33.     WDT     Wh-determiner
34.     WP     Wh-pronoun
35.     WP$     Possessive wh-pronoun
36.     WRB     Wh-adverb

 

现在根据上面主要词性缩写的解释,可以比较容易理解上面接口给出的词性标注了。

在nltk的corpus,语料库,里面有些是加过词性标注的,这些可以用于训练集,标注过的corpors都有tagged_words() method

>>> nltk.corpus.brown.tagged_words()
[('The', 'AT'), ('Fulton', 'NP-TL'), ('County', 'NN-TL'), ...]
>>> nltk.corpus.brown.tagged_words(simplify_tags=True)
[('The', 'DET'), ('Fulton', 'N'), ('County', 'N'), ...] 
Automatic Tagging

下面就来讲讲各种自动标注的方法,因为tag要根据词的context,所以tag是以sentense为单位的,而不是word为单位,因为如果以词为单位,一个句子的结尾词会影响到下个句子开头词的tag,这样是不合理的,以句子为单位可以避免这样的错误,让context的影响不会越过sentense。

我们就用brown corpus作为例子,

>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
#这个categories有什么意义吗?
>>> brown_sents = brown.sents(categories='news')


可以分布取出标注过的句子集合, 未标注的句子集合,分别用做标注算法的验证集和测试集。

The Default Tagger
The simplest possible tagger assigns the same tag to each token.
>>> raw = 'I do not like green eggs and ham, I do not like them Sam I am!'
>>> tokens = nltk.word_tokenize(raw)>>> default_tagger = nltk.DefaultTagger('NN')
#定义一个tagger,把词性全部标注为NN。
>>> default_tagger.tag(tokens) 

[('I', 'NN'), ('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('green', 'NN'), 

('eggs', 'NN'), ('and', 'NN'), ('ham', 'NN'), (',', 'NN'), ('I', 'NN'), 

198 | Chapter 5: Categorizing and Tagging Words 

('do', 'NN'), ('not', 'NN'), ('like', 'NN'), ('them', 'NN'), ('Sam', 'NN'), 

('I', 'NN'), ('am', 'NN'), ('!', 'NN')]


这个Tagger,真的很简单就是把所有的都标注成你告诉他的这种,看似毫无意义的tagger,不过作为backoff,还是有用的

 其实Tagger就是标注方式,它会对对应单词创建一个二元数组,【单词,词性】。这个词性,也就是tagger,可以设置成任意值,比如[]、string类。

The Regular Expression Tagger

The regular expression tagger assigns tags to tokens on the basis of matching patterns.

>>> patterns = [
... (r'.*ing$', 'VBG'), # gerunds
... (r'.*ed$', 'VBD'), # simple past
... (r'.*es$', 'VBZ'), # 3rd singular present
... (r'.*ould$', 'MD'), # modals
... (r'.*/'s$', 'NN$'), # possessive nouns
... (r'.*s$', 'NNS'), # plural nouns
... (r'^-?[0-9]+(.[0-9]+)?$', 'CD'), # cardinal numbers
... (r'.*', 'NN') # nouns (default)... ]

#创建tagger也可以从二元数列中创建,也可以一次指定一个词的两个词性。例如:


>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos = dict(colorless='ADJ', ideas='N', sleep='V', furiously='ADV')

#从二元数列创建


>>> pos = defaultdict(list)
>>> pos['sleep'] = ['NOUN', 'VERB']
>>> pos['ideas']
[]

#指定默认词性为list,则词性为[]。也可以同时指定一个词两个词性。

>>> regexp_tagger = nltk.RegexpTagger(patterns)
#这是正则表达式的专用tagger方法
>>> regexp_tagger.tag(brown_sents[3])
#很疑惑这个brown_sents到底是什么?通过后面的Int参数改变输出的句子。猜测有可能是预设好的句子。
[('``', 'NN'), ('Only', 'NN'), ('a', 'NN'), ('relative', 'NN'), ('handful', 'NN'), 

('of', 'NN'), ('such', 'NN'), ('reports', 'NNS'), ('was', 'NNS'), ('received', 'VBD'), 

("''", 'NN'), (',', 'NN'), ('the', 'NN'), ('jury', 'NN'), ('said', 'NN'), (',', 'NN'), 

('``', 'NN'), ('considering', 'VBG'), ('the', 'NN'), ('widespread', 'NN'), ...]


这个Tagger,进步了一点,就是你可以定义一些正则文法的规则,满足规则就tag成相应的词性,否则还是default

 

The Lookup Tagger

A lot of high-frequency words do not have the NN tag. Let’s find the hundred most frequent words and store their most likely tag.

这个方法开始有点实用价值了, 就是通过统计训练corpus里面最常用的词,最有可能出现的词性是什么,来进行词性标注。

>>> fd = nltk.FreqDist(brown.words(categories='news'))
[FreqDist({'The': 806,'Fulton': 14, 'County': 35, 'Grand': 6, 'Jury': 2, 'said': 402, 'Friday': 41,……]
#从句子中统计词频
>>> cfd = nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))
#统计出每个单词的词性出现的次数
>>> most_freq_words = fd.keys()[:100]
#挑出词频top100的词
>>> likely_tags = dict((word, cfd[word].max()) for word in most_freq_words) 

>>> baseline_tagger = nltk.UnigramTagger(model=likely_tags)


这段code就是从corpus中取出top 100的词,然后找到这100个词出现次数最多的词性,然后形成likely_tags的字典

然后将这个字典作为model传个unigramTagger

unigramTagger就是一元的tagger,即不考虑前后context的一种简单的tagger

这个方法有个最大的问题,你只指定了top 100词的词性,那么其他的词怎么办

好,前面的default tagger有用了

baseline_tagger = nltk.UnigramTagger(model=likely_tags, backoff=nltk.DefaultTagger('NN'))

这样就可以部分解决这个问题, 不知道的就用default tagger来标注

这个方法的准确性完全取决于这个model的大小,这儿取了top100的词,可能准确性不高,但是随着你取的词的增多,这个准确率会不断提高。

 

N-Gram Tagging

Unigram taggers

上面给出的lookup tagger就是用的Unigram tagger, 现在给出Unigram tagger更一般的用法

>>> from nltk.corpus import brown
>>> brown_tagged_sents = brown.tagged_sents(categories='news')
>>> brown_sents = brown.sents(categories='news')
>>> unigram_tagger = nltk.UnigramTagger(brown_tagged_sents) #Training 
>>> unigram_tagger.tag(brown_sents[2007])
[('Various', 'JJ'), ('of', 'IN'), ('the', 'AT'), ('apartments', 'NNS'),
('are', 'BER'), ('of', 'IN'), ('the', 'AT'), ('terrace', 'NN'), ('type', 'NN'),
(',', ','), ('being', 'BEG'), ('on', 'IN'), ('the', 'AT'), ('ground', 'NN'),
('floor', 'NN'), ('so', 'QL'), ('that', 'CS'), ('entrance', 'NN'), ('is', 'BEZ'),
('direct', 'JJ'), ('.', '.')]

你可以来已标注的语料库对Unigram tagger进行训练

 

An n-gram tagger

n元就是要考虑context,即考虑前n-1个word的tag,来给当前的word进行tagging

就n元tagger的特例二元tagger作为例子

>>> bigram_tagger = nltk.BigramTagger(train_sents)
>>> bigram_tagger.tag(brown_sents[2007])

这样有个问题,如果tag的句子中的某个词的context在训练集里面没有,哪怕这个词在训练集中有,也无法对他进行标注,还是要通过backoff来解决这样的问题

>>> t0 = nltk.DefaultTagger('NN')
>>> t1 = nltk.UnigramTagger(train_sents, backoff=t0)
>>> t2 = nltk.BigramTagger(train_sents, backoff=t1)

Transformation-Based Tagging

n-gram tagger存在的问题是,model会占用比较大的空间,还有就是在考虑context时,只会考虑前面词的tag,而不会考虑词本身。

而要介绍的这种tagger可以比较好的解决这些问题,用存储rule来代替model,这样可以节省大量的空间,同时在rule中不限制仅考虑tag,也可以考虑word本身。

 

Brill tagging is a kind of transformation-based learning, named after its inventor. The general idea is very simple: guess the tag of each word, then go back and fix the mistakes.

 

那么Brill tagging的原理从底下这个例子就可以了解

(1) replace NN with VB when the previous word is TO;

(2) replace TO with IN when the next tag is NNS.

Phrase     to increase grants to states for vocational rehabilitation
Unigram TO    NN        NNS   TO NNS    IN      JJ                NN
Rule 1              VB
Rule 2                                    IN
Output

第一步用unigram tagger对所有词做一遍tagging,这里面可能有很多不准确的

下面就用rule来纠正第一步中guess错的那些词的tag,最终得到比较准确的tagging

 

那么这些rules是怎么生成的了,答案是在training阶段自动生成的

During its training phase, the tagger guesses values for T1, T2, and C, to create thousands of candidate rules. Each rule is scored according to its net benefit: the number of incorrect tags that it corrects, less the number
of correct tags it incorrectly modifies.

意思就是在training阶段,先创建thousands of candidate rules, 这些rule创建可以通过简单的统计来完成,所以可能有一些rule是不准确的。那么用每条rule去fix mistakes,然后和正确tag对比,改对的数目减去改错的数目用来作为score评价该rule的好坏,自然得分高的留下,得分低的rule就删去, 底下是些rules的例子

NN -> VB if the tag of the preceding word is 'TO'
NN -> VBD if the tag of the following word is 'DT'
NN -> VBD if the tag of the preceding word is 'NNS'
NN -> NNP if the tag of words i-2...i-1 is '-NONE-'
NN -> NNP if the tag of the following word is 'NNP'
NN -> NNP if the text of words i-2...i-1 is 'like'
NN -> VBN if the text of the following word is '*-1'
  •  但是上面的这种方法只适合自己训练规则,或自己创建规则。有没有已经训练好的tagger呢?或者能不能修改默认的分类tagger呢?

通过


nltk.ConditionalFreqDist(brown.tagged_words(categories='news'))

的结果:

ConditionalFreqDist(nltk.probability.FreqDist,
                    {'The': FreqDist({'AT': 775, 'AT-HL': 3, 'AT-TL': 28}),
                     'Fulton': FreqDist({'NP': 4, 'NP-TL': 10}),
                     'County': FreqDist({'NN-TL': 35}),
                     'Grand': FreqDist({'FW-JJ-TL': 1, 'JJ-TL': 5}),
                     'Jury': FreqDist({'NN-TL': 2}),
                     'said': FreqDist({'VBD': 382, 'VBN': 20}),
                     'Friday': FreqDist({'NR': 41}),
                     'an': FreqDist({'AT': 300}),
                     'investigation': FreqDist({'NN': 9}),
                     'of': FreqDist({'IN': 2716, 'IN-HL': 5, 'IN-TL': 128}),
                     "Atlanta's": FreqDist({'NP$': 4}),
                     'recent': FreqDist({'JJ': 20}),
                     'primary': FreqDist({'JJ': 4, 'NN': 13}),
                     'election': FreqDist({'NN': 38}),
                     'produced': FreqDist({'VBD': 5, 'VBN': 1}),

可以看出,自带的分类器其实并不是靠字典,而是靠规则分类词性的。然后有些句子分出来了hate,有些没分出来,其实是因为大写的HATE是不会被tags打标记的。所以解决方法就是tolower,把所有的文字在进filter之前全都变小写一次!

(逃了)

(还是学到不少东西的)


>>> pos = {'colorless': 'ADJ', 'ideas': 'N', 'sleep': 'V', 'furiously': 'ADV'}
>>> pos = dict(colorless='ADJ', ideas='N', sleep='V', furiously='ADV')