方式一. 简化版

  1. 安装jieba库/numpy库
  2. 编程读取《三国演义》电子书,输出出场次数最高的10个人物名字

python人名 识别 python人名统计_python


python人名 识别 python人名统计_python_02

代码注释:

import numpy
import jieba

# numpy输出有省略号的问题,无法显示全部数据
numpy.set_printoptions(threshold=numpy.inf)


def readFile(path):
    with open(path, mode='r', encoding='utf-8') as f:
        try:
            data = f.read()
            if data is not None or data != '':
                return data
        except:
            print("读取文件失败!")


if __name__ == "__main__":
    # 读取文本内容
    text = readFile('三国演义.txt')
    # 搜索引擎模式:在精确模式基础上,对长词再次切分
    arr = jieba.cut_for_search(text)
    obj = {}
    for name in arr:
        # 分词长度为2、3收录对象
        if len(name) == 2 or len(name) == 3:
            # 定义对象属性和统计当前对象出现频次
            obj[name] = obj.get(name, 0) + 1
    # 对象转化为列表
    items = list(obj.items())
    """
    提供同质数组基本类型的字符串基本字符串格式由3部分组成: 
    描述数据字节顺序的字符(<: little-endian,>: big-endian,|: not-relevant),
    给出数组基本类型的字符代码,以及提供类型使用的字节数的整数。
    基本类型字符代码为:
    代码	描述
    t	位字段(Bit field,后面的整数表示位字段中的位数)。
    b	Boolean(Boolean 整数类型,其中所有值仅为True或False)。
    i	Integer(整数)
    u	无符号整数(Unsigned integer)
    f	浮点数(Floating point)
    c	复浮点数(Complex floating point)
    m	时间增量(Timedelta)
    M	日期增量(Datetime)
    O	对象(即内存包含指向 PyObject 的指针)
    S	字符串(固定长度的char序列)
    U	Unicode(Py_UNICODE的固定长度序列)
    V	其他(void * - 每个项目都是固定大小的内存块
    """
    people = numpy.dtype([('name', 'U2'), ('count', int)])
    # 列表转化为数组
    ar = numpy.array(items, dtype=people)
    """
    axis=0 列递增
    kind='mergesort' 堆排序
    order='count' 排序字段
    flipud() 倒置排序
    """
print(numpy.flipud(numpy.sort(ar, axis=0, kind='mergesort', order='count')))

二.方式二 词云统计–转自

Python 三国演义文本可视化(词云,人物关系图,主要人物出场次数,章回字数)

python人名 识别 python人名统计_html_03

python人名 识别 python人名统计_词频_04


python人名 识别 python人名统计_词云_05


alice_mask.png

python人名 识别 python人名统计_python人名 识别_06

python人名 识别 python人名统计_html_07

# -*- coding: utf-8 -*-
"""
Created on Wed Jun 23 11:41:01 2021

@author: 陈建兵
"""

# 导入networkx,matplotlib包
import networkx as nx
import matplotlib.pyplot as plt
import jieba.posseg as pseg  # 引入词性标注接口
# 导入random包
import random
import codecs
# 导入pyecharts
from pyecharts import options as opts
# pyecharts 柱状图
from pyecharts.charts import Bar
# pyecharts 词云图
from pyecharts.charts import WordCloud
# pyecharts 折线/面积图
from pyecharts.charts import Line
# 词云
import wordcloud
import imageio

# 定义主要人物的个数(用于人物关系图,人物出场次数可视化图)
mainTop = 15


# 读取文本
def read_txt(filepath):
    file = open(filepath, 'r+', encoding='utf-8')
    txt = file.read()
    file.close()
    return txt


# 获取小说文本
txt = read_txt('三国演义.txt')


# 停词文档
def stopwordslist(filepath):
    stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]
    return stopwords


# stopwords = stopwordslist('中文停用词库.txt')

excludes = {'将军', '却说', '令人', '赶来', '徐州', '不见', '下马', '喊声', '因此', '未知', '大败', '百姓', '大事',
            '一军', '之后', '接应', '起兵',
            '成都', '原来', '江东', '正是', '忽然', '原来', '大叫', '上马', '天子', '一面', '太守', '不如', '忽报',
            '后人', '背后', '先主', '此人',
            '城中', '然后', '大军', '何不', '先生', '何故', '夫人', '不如', '先锋', '二人', '不可', '如何', '荆州',
            '不能', '如此', '主公', '军士',
            '商议', '引兵', '次日', '大喜', '魏兵', '军马', '于是', '东吴', '今日', '左右', '天下', '不敢', '陛下',
            '人马', '不知', '都督', '汉中',
            '一人', '众将', '后主', '只见', '蜀兵', '马军', '黄巾', '立功', '白发', '大吉', '红旗', '士卒', '钱粮',
            '于汉', '郎舅', '龙凤', '古之', '白虎',
            '古人云', '尔乃', '马飞报', '轩昂', '史官', '侍臣', '列阵', '玉玺', '车驾', '老夫', '伏兵', '都尉', '侍中',
            '西凉', '安民', '张曰', '文武', '白旗',
            '祖宗', '寻思'}  # 排除的词汇

# 使用精确模式对文本进行分词
# words = jieba.lcut(txt)
counts = {}  # 通过键值对的形式存储词语及其出现的次数


# 得到 分词和出现次数
def getWordTimes():
    # 分词,返回词性
    poss = pseg.cut(txt)
    for w in poss:
        if w.flag != 'nr' or len(w.word) < 2 or w.word in excludes:
            continue  # 当分词长度小于2或该词词性不为nr(人名)时认为该词不为人名
        elif w.word == '孔明' or w.word == '孔明曰' or w.word == '卧龙先生':
            real_word = '诸葛亮'
        elif w.word == '云长' or w.word == '关公曰' or w.word == '关公':
            real_word = '关羽'
        elif w.word == '玄德' or w.word == '玄德曰' or w.word == '玄德甚' or w.word == '玄德遂' or w.word == '玄德兵' or w.word == '玄德领' \
                or w.word == '玄德同' or w.word == '刘豫州' or w.word == '刘玄德':
            real_word = '刘备'
        elif w.word == '孟德' or w.word == '丞相' or w.word == '曹贼' or w.word == '阿瞒' or w.word == '曹丞相' or w.word == '曹将军':
            real_word = '曹操'
        elif w.word == '高祖':
            real_word = '刘邦'
        elif w.word == '光武':
            real_word = '刘秀'
        elif w.word == '桓帝':
            real_word = '刘志'
        elif w.word == '灵帝':
            real_word = '刘宏'
        elif w.word == '公瑾':
            real_word = '周瑜'
        elif w.word == '伯符':
            real_word = '孙策'
        elif w.word == '吕奉先' or w.word == '布乃' or w.word == '布大怒' or w.word == '吕布之':
            real_word = '吕布'
        elif w.word == '赵子龙' or w.word == '子龙':
            real_word = '赵云'
        elif w.word == '卓大喜' or w.word == '卓大怒':
            real_word = '董卓'  # 把相同意思的名字归为一个人
        else:
            real_word = w.word
        counts[real_word] = counts.get(real_word, 0) + 1


getWordTimes()
items = list(counts.items())
# 进行降序排列 根据词语出现的次数进行从大到小排序
items.sort(key=lambda x: x[1], reverse=True)


# 导出数据
# 分词生成人物词频(写入文档)
def wordFreq(filepath, topn):
    with codecs.open(filepath, "w", "utf-8") as f:
        for i in range(topn):
            word, count = items[i]
            f.write("{}:{}\n".format(word, count))


# 生成词频文件
wordFreq("三国演义词频_人名.txt", 300)

# 将txt文本里的数据转换为字典形式
fr = open('三国演义词频_人名.txt', 'r', encoding='utf-8')
dic = {}
keys = []  # 用来存储读取的顺序
for line in fr:
    # 去空白,并用split()方法返回列表
    v = line.strip().split(':')
    # print("v",v)   # v ['诸葛亮', '1373']
    # 拼接字典 {'诸葛亮', '1373'}
    dic[v[0]] = v[1]
    keys.append(v[0])
fr.close()
# 输出前几个的键值对
print("人物出现次数TOP", mainTop)
print(list(dic.items())[:mainTop])

#  绘图
# 人名列表 (用于人物关系图,pyecharts人物出场次数图)
list_name = list(dic.keys())  # 人名
list_name_times = list(dic.values())  # 提取字典里的数据作为绘图数据


# 可视化人物出场次数
def creat_people_view():
    bar = Bar()
    bar.add_xaxis(list_name[0:mainTop])
    bar.add_yaxis("人物出场次数", list_name_times)
    bar.set_global_opts(title_opts=opts.TitleOpts(title="人物出场次数可视化图", subtitle="三国人物TOP" + str(mainTop)),
                        toolbox_opts=opts.ToolboxOpts(is_show=True),
                        xaxis_opts=opts.AxisOpts(axislabel_opts={"rotate": 45}))
    bar.set_series_opts(label_opts=opts.LabelOpts(position="top"))
    bar.render_notebook()  # 在 notebook 中展示
    # make_snapshot(snapshot, bar.render(), "bar.png")
    # 生成 html 文件
    bar.render("三国演义人物出场次数可视化图.html")


# 生成词云
def creat_wordcloud():
    bg_pic = imageio.imread(uri='alice_mask.png')
    wc = wordcloud.WordCloud(font_path='c:\Windows\Fonts\simhei.ttf',
                             background_color='white',
                             width=1000, height=800,
                             # stopwords=excludes,# 设置停用词
                             max_words=500,
                             mask=bg_pic  # mask参数设置词云形状
                             )
    # 从单词和频率创建词云
    wc.generate_from_frequencies(counts)
    # generate(text)  根据文本生成词云
    # wc.generate(txt)
    # 保存图片
    wc.to_file('三国演义词云_人名.png')

    #  显示词云图片
    plt.imshow(wc)
    plt.axis('off')
    plt.show()


# 使用pyecharts 的方法生成词云
def creat_wordcloud_pyecharts():
    wordsAndTimes = list(dic.items())
    (
        WordCloud()
        .add(series_name="人物次数", data_pair=wordsAndTimes,
             word_size_range=[20, 100], textstyle_opts=opts.TextStyleOpts(font_family="cursive"), )
        .set_global_opts(title_opts=opts.TitleOpts(title="三国演义词云"))
        .render("三国演义词云_人名.html")
    )


# 使用pyecharts 的方法生成章回字数
def chapter_word():
    # 进行章回切片
    list2 = txt.split("------------")
    chapter_list = [i for i in range((len(list2)))]
    word_list = [len(i) for i in list2]

    (
        Line(init_opts=opts.InitOpts(width="1400px", height="700px"))
        .add_xaxis(xaxis_data=chapter_list)
        .add_yaxis(
            series_name="章回字数",
            y_axis=word_list,
            markpoint_opts=opts.MarkPointOpts(
                data=[
                    opts.MarkPointItem(type_="max", name="最大值"),
                    opts.MarkPointItem(type_="min", name="最小值"),
                ]
            ),
            markline_opts=opts.MarkLineOpts(
                data=[opts.MarkLineItem(type_="average", name="平均值")]
            ),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="三国演义章回字数", subtitle=""),
            tooltip_opts=opts.TooltipOpts(trigger="axis"),
            toolbox_opts=opts.ToolboxOpts(is_show=True),
            xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
        )
        .render("三国演义章回字数.html")
    )


# 颜色生成
colorNum = len(list_name[0:mainTop])


# print('颜色数',colorNum)
def randomcolor():
    colorArr = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F']
    color = ""
    for i in range(6):
        color += colorArr[random.randint(0, 14)]
    return "#" + color


def color_list():
    colorList = []
    for i in range(colorNum):
        colorList.append(randomcolor())

    return colorList


# 解决中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签


# 生成人物关系图
def creat_relationship():
    # 人物节点颜色
    colors = color_list()
    Names = list_name[0:mainTop]
    relations = {}
    # 按段落划分,假设在同一段落中出现的人物具有共现关系
    lst_para = (txt).split('\n')  # lst_para是每一段
    for text in lst_para:
        for name_0 in Names:
            if name_0 in text:
                for name_1 in Names:
                    if name_1 in text and name_0 != name_1 and (name_1, name_0) not in relations:
                        relations[(name_0, name_1)] = relations.get((name_0, name_1), 0) + 1
    maxRela = max([v for k, v in relations.items()])
    relations = {k: v / maxRela for k, v in relations.items()}
    # return relations

    plt.figure(figsize=(15, 15))
    # 创建无多重边无向图
    G = nx.Graph()
    for k, v in relations.items():
        G.add_edge(k[0], k[1], weight=v)
    # 筛选权重大于0.6的边
    elarge = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] > 0.6]
    # 筛选权重大于0.3小于0.6的边
    emidle = [(u, v) for (u, v, d) in G.edges(data=True) if (d['weight'] > 0.3) & (d['weight'] <= 0.6)]
    # 筛选权重小于0.3的边
    esmall = [(u, v) for (u, v, d) in G.edges(data=True) if d['weight'] <= 0.3]
    # 设置图形布局
    pos = nx.spring_layout(G)  # 用Fruchterman-Reingold算法排列节点(样子类似多中心放射状)
    # 设置节点样式
    nx.draw_networkx_nodes(G, pos, alpha=0.8, node_size=1300, node_color=colors)
    # 设置大于0.6的边的样式
    nx.draw_networkx_edges(G, pos, edgelist=elarge, width=2.5, alpha=0.9, edge_color='g')
    # 0.3~0.6
    nx.draw_networkx_edges(G, pos, edgelist=emidle, width=1.5, alpha=0.6, edge_color='y')
    # <0.3
    nx.draw_networkx_edges(G, pos, edgelist=esmall, width=1, alpha=0.4, edge_color='b', style='dashed')
    nx.draw_networkx_labels(G, pos, font_size=14)

    plt.title("《三国演义》主要人物社交关系网络图")
    # 关闭坐标轴
    plt.axis('off')

    # 保存图表
    plt.savefig('《三国演义》主要人物社交关系网络图.png', bbox_inches='tight')
    plt.show()


def main():
    # 人物出场次数可视化图
    creat_people_view()
    # 词云图
    creat_wordcloud()
    creat_wordcloud_pyecharts()
    # 人物关系图
    creat_relationship()
    # 章回字数
    chapter_word()


if __name__ == '__main__':
    main()