首先先把数据集的图片路径保存在一个txt文件夹里面
import os
def generate(dir, label):
listText = open('list.txt', 'a')
for file in dir:
fileType = os.path.split(file)
if fileType[1] == '.txt':
continue
name = file + ' ' + str(int(label)) + '\n'
listText.write(name)
listText.close()
outer_path = 'E:/lly/data/' # 这里是你的图片的目录
if __name__ == '__main__':
i = 1
num = 0
personlist = os.listdir(outer_path) # 列举文件夹
personlist.sort()
for person in personlist:
personPath = outer_path+person + "/"
fingerlist = os.listdir(personPath)
fingerlist.sort()
for finger in fingerlist:
finallPATH=os.path.join(outer_path, person,finger)
finallPATH=finallPATH.replace('\\', '/')
listText = open('image_list.txt', 'a')
fileType = os.path.split(finallPATH)
name = finallPATH+ '\n'
listText.write(name)
listText.close()
i += 1
计算自己数据集的均值和方差:
# -*- coding: utf-8 -*-**
import numpy as np
import cv2
import random
import os
# calculate means and std 注意换行\n符号**
# train.txt中每一行是图像的位置信息**
path = 'C:/Users/lenovo/PycharmProjects/my/image_list.txt'
means = [0, 0, 0]
stdevs = [0, 0, 0]
index = 1
num_imgs = 0
with open(path, 'r') as f:
lines = f.readlines()
# random.shuffle(lines)
for line in lines:
print(line)
print('{}/{}'.format(index, len(lines)))
index += 1
a = os.path.join(line)
# print(a[:-1])
num_imgs += 1
img = cv2.imread(a[:-1])
print(img, 22)
img = np.asarray(img)
img = img.astype(np.float32) / 255.
for i in range(3):
means[i] += img[:, :, i].mean()
stdevs[i] += img[:, :, i].std()
print(num_imgs)
means.reverse()
stdevs.reverse()
means = np.asarray(means) / num_imgs
stdevs = np.asarray(stdevs) / num_imgs
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))