文章目录
- RS485 通信与 Modbus 协议
- 单片机 RS485 通信接口、控制线、原理图及程序实例
RS485 通信与 Modbus 协议
在工业控制、电力通讯、智能仪表等领域,通常情况下是采用串口通信的方式进行数据交换。最初采用的方式是 RS232 接口,由于工业现场比较复杂,各种电气设备会在环境中产生比较多的电磁干扰,会导致信号传输错误。除此之外,RS232 接口只能实现点对点通信,不具备联网功能,最大传输距离也只能达到十几米,不能满足远距离通信要求。而 RS485 则解决了这些问题,数据信号采用差分传输方式,可以有效的解决共模干扰问题,最大距离可达1200米,并且允许多个收发设备接到同一条总线上。随着工业应用通信越来越多,1979年施耐德电气制定了一个用于工业现场的总线协议 Modbus 协议,现在工业中使用 RS485 通信场合很多都采用 Modbus 协议,本节课我们就来讲解一下 RS485 通信和 Modbus 协议。
单片机 RS485 通信接口、控制线、原理图及程序实例
RS232 标准是诞生于 RS485 之前的,但是 RS232 有几处不足的地方:
- 接口的信号电平值较高,达到十几 V,使用不当容易损坏接口芯片,电平标准也与 TTL 电平不兼容。
- 传输速率有局限,不可以过高,一般到一两百千比特每秒(Kb/s)就到极限了。
- 接口使用信号线和 GND 与其它设备形成共地模式的通信,这种共地模式传输容易产生干扰,并且抗干扰性能也比较弱。
- 传输距离有限,最多只能通信几十米。
- 通信的时候只能两点之间进行通信,不能够实现多机联网通信。
针对 RS232 接口的不足,就不断出现了一些新的接口标准,RS485 就是其中之一,它具备以下的特点:
- 采用差分信号。我们在讲 A/D 的时候,讲过差分信号输入的概念,同时也介绍了差分输入的好处,最大的优势是可以抑制共模干扰。尤其当工业现场环境比较复杂,干扰比较多时,采用差分方式可以有效的提高通信可靠性。RS485 采用两根通信线,通常用 A 和 B 或者 D+ 和 D- 来表示。逻辑“1”以两线之间的电压差为 +(0.2~6)V 表示,逻辑“0”以两线间的电压差为 -(0.2~6)V 来表示,是一种典型的差分通信。
- RS485 通信速率快,最大传输速度可以达到 10 Mb/s 以上。
- RS485 内部的物理结构,采用的是平衡驱动器和差分接收器的组合,抗干扰能力也大大增加。
- 传输距离最远可以达到1200米左右,但是它的传输速率和传输距离是成反比的,只有在 100 Kb/s 以下的传输速度,才能达到最大的通信距离,如果需要传输更远距离可以使用中继。
- 可以在总线上进行联网实现多机通信,总线上允许挂多个收发器,从现有的 RS485 芯片来看,有可以挂32、64、128、256等不同个设备的驱动器。
- RS485 的接口非常简单,与 RS232 所使用的 MAX232 是类似的,只需要一个 RS485 转换器,就可以直接与单片机的 UART 串口连接起来,并且使用完全相同的异步串行通信协议。但是由于 RS485 是差分通信,因此接收数据和发送数据是不能同时进行的,也就是说它是一种半双工通信。那我们如何判断什么时候发送,什么时候接收呢?
RS485 转换芯片很多,这节课我们以典型的 MAX485 为例讲解 RS485 通信,
MAX485 是美信(Maxim)推出的一款常用 RS485 转换器。其中5脚和8脚是电源引脚;6脚和7脚就是 RS485 通信中的 A 和 B 两个引脚;1脚和4脚分别接到单片机的 RXD 和 TXD 引脚上,直接使用单片机 UART 进行数据接收和发送;2脚和3脚是方向引脚,其中2脚是低电平使能接收器,3脚是高电平使能输出驱动器,我们把这两个引脚连到一起,平时不发送数据的时候,保持这两个引脚是低电平,让 MAX485 处于接收状态,当需要发送数据的时候,把这个引脚拉高,发送数据,发送完毕后再拉低这个引脚就可以了。为了提高 RS485 的抗干扰能力,需要在靠近 MAX485 的 A 和 B 引脚之间并接一个电阻,这个电阻阻值从100欧到 1 K 都是可以。
在这里我们还要介绍一下如何使用 KST-51 单片机开发板进行外围扩展实验。我们的开发板只能把基本的功能给同学们做出来提供实验练习,但是同学们学习的脚步不应该停留在这个实验板上。如果想进行更多的实验,就可以通过单片机开发板的扩展接口进行扩展实验。大家可以看到蓝绿色的单片机座周围有32个插针,这32个插针就是把单片机的32个 IO 引脚全部都引出来了。在原理图上体现出来的就是 J4、J5、J6、J7 这4个器件
这32个 IO 口中并不是所有的都可以用来对外扩展,其中既作为数据输出,又可以作为数据输入的引脚是不可以用的,比如 P3.2、P3.4、P3.6 引脚,这三个引脚是不可用的。比如 P3.2 这个引脚,如果我们用来扩展,发送的信号如果和 DS18B20 的时序吻合,会导致 DS18B20 拉低引脚,影响通信。除这3个 IO 口以外的其它29个,都可以使用杜邦线接上插针,扩展出来使用。当然了,如果把当前的 IO 口应用于扩展功能了,板子上的相应功能就实现不了了,也就是说需要扩展功能和板载功能之间二选一。
在进行 RS485 实验中,我们通信用的引脚必须是 P3.0 和 P3.1,此外还有一个方向控制引脚,我们使用杜邦线将其连接到 P1.7 上去。RS485 的另外一端,大家可以使用一个 USB 转 RS485 模块,用双绞线把开发板和模块上的 A 和 B 分别对应连起来,USB 那头插入电脑,然后就可以进行通信了。
学习了第13章实用的串口通信方法和程序后,做这种串口通信的方法就很简单了,基本是一致的。我们使用实用串口通信例程的思路,做了一个简单的程序,通过串口调试助手下发任意个字符,单片机接收到后在末尾添加“回车+换行”符后再送回,在调试助手上重新显示出来,先把程序贴出来。
程序中需要注意的一点是:因为平常都是将 MAX485 设置为接收状态,只有在发送数据的时候才将 MAX485 改为发送状态,所以在 UartWrite()函数开头将 MAX485 方向引脚拉高,函数退出前再拉低。但是这里有一个细节,就是单片机的发送和接收中断产生的时刻都是在停止位的一半上,也就是说每当停止位传送了一半的时候,RI 或 TI 就已经置位并且马上进入中断(如果中断使能的话)函数了,接收的时候自然不会存在问题,但发送的时候就不一样了:当紧接着向 SBUF 写入一个字节数据时,UART 硬件会在完成上一个停止位的发送后,再开始新字节的发送,但如果此时不是继续发送下一个字节,而是已经发送完毕了,要停止发送并将 MAX485 方向引脚拉低以使 MAX485 重新处于接收状态时就有问题了,因为这时候最后的这个停止位实际只发送了一半,还没有完全完成,所以就有了 UartWrite()函数内 DelayX10us(5)这个操作,这是人为的增加了 50 us 的延时,这 50 us 的时间正好让剩下的一半停止位完成,那么这个时间自然就是由通信波特率决定的了,为波特率周期的一半。
#include <reg52.h>
#include <intrins.h>
sbit RS485_DIR = P1^7; //RS485 方向选择引脚
bit flagFrame = 0; //帧接收完成标志,即接收到一帧新数据
bit flagTxd = 0; //单字节发送完成标志,用来替代 TXD 中断标志位
unsigned char cntRxd = 0; //接收字节计数器
unsigned char pdata bufRxd[64]; //接收字节缓冲区
extern void UartAction(unsigned char *buf, unsigned char len);
/* 串口配置函数,baud-通信波特率 */
void ConfigUART(unsigned int baud){
RS485_DIR = 0; //RS485 设置为接收方向
SCON = 0x50; //配置串口为模式 1
TMOD &= 0x0F; //清零 T1 的控制位
TMOD |= 0x20; //配置 T1 为模式 2
TH1 = 256 - (11059200/12/32)/baud; //计算 T1 重载值
TL1 = TH1; //初值等于重载值
ET1 = 0; //禁止 T1 中断
ES = 1; //使能串口中断
TR1 = 1; //启动 T1
}
/* 软件延时函数,延时时间(t*10)us */
void DelayX10us(unsigned char t){
do {
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
_nop_();
} while (--t);
}
/* 串口数据写入,即串口发送函数,buf-待发送数据的指针,len-指定的发送长度 */
void UartWrite(unsigned char *buf, unsigned char len){
RS485_DIR = 1; //RS485 设置为发送
while (len--){ //循环发送所有字节
flagTxd = 0; //清零发送标志
SBUF = *buf++; //发送一个字节数据
while (!flagTxd); //等待该字节发送完成
}
DelayX10us(5); //等待最后的停止位完成,延时时间由波特率决定
RS485_DIR = 0; //RS485 设置为接收
}
/* 串口数据读取函数,buf-接收指针,len-指定的读取长度,返回值-实际读到的长度 */
unsigned char UartRead(unsigned char *buf, unsigned char len){
unsigned char i;
//指定读取长度大于实际接收到的数据长度时,
//读取长度设置为实际接收到的数据长度
if (len > cntRxd){
len = cntRxd;
}
for (i=0; i<len; i++){ //拷贝接收到的数据到接收指针上
*buf++ = bufRxd[i];
}
cntRxd = 0; //接收计数器清零
return len; //返回实际读取长度
}
/* 串口接收监控,由空闲时间判定帧结束,需在定时中断中调用,ms-定时间隔 */
void UartRxMonitor(unsigned char ms){
static unsigned char cntbkp = 0;
static unsigned char idletmr = 0;
if (cntRxd > 0){ //接收计数器大于零时,监控总线空闲时间
if (cntbkp != cntRxd){ //接收计数器改变,即刚接收到数据时,清零空闲计时
cntbkp = cntRxd;
idletmr = 0;
}else{ //接收计数器未改变,即总线空闲时,累积空闲时间
if (idletmr < 30){ //空闲计时小于 30ms 时,持续累加
idletmr += ms;
if (idletmr >= 30){ //空闲时间达到 30ms 时,即判定为一帧接收完毕
flagFrame = 1; //设置帧接收完成标志
}
}
}
}else{
cntbkp = 0;
}
}
/* 串口驱动函数,监测数据帧的接收,调度功能函数,需在主循环中调用 */
void UartDriver(){
unsigned char len;
unsigned char pdata buf[40];
if (flagFrame){ //有命令到达时,读取处理该命令
flagFrame = 0;
len = UartRead(buf, sizeof(buf)-2); //将接收到的命令读取到缓冲区中
UartAction(buf, len); //传递数据帧,调用动作执行函数
}
}
/* 串口中断服务函数 */
void InterruptUART() interrupt 4{
if (RI){ //接收到新字节
RI = 0; //清零接收中断标志位
//接收缓冲区尚未用完时,保存接收字节,并递增计数器
if (cntRxd < sizeof(bufRxd)){
bufRxd[cntRxd++] = SBUF;
}
}
if (TI){ //字节发送完毕
TI = 0; //清零发送中断标志位
flagTxd = 1; //设置字节发送完成标志
}
}
现在看这种串口程序,是不是感觉很简单了呢?串口通信程序我们反反复复的使用,加上随着学习的模块越来越多,实践的越来越多,原先感觉很复杂的东西,现在就会感到简单了。从设备管理器里可以查看所有的 COM 口号,我们下载程序用的是 COM4,而 USB 转 RS485 虚拟的是 COM5,通信的时候我们用的是 COM5 口,如图