Spark Streaming原生支持一些不同的数据源。一些“核心”数据源已经被打包到Spark Streaming 的 Maven 工件中,而其他的一些则可以通过 spark-streaming-kafka 等附加工件获取。每个接收器都以 Spark 执行器程序中一个长期运行的任务的形式运行,因此会占据分配给应用的 CPU 核心。此外,我们还需要有可用的 CPU 核心来处理数据。这意味着如果要运行多个接收器,就必须至少有和接收器数目相同的核心数,还要加上用来完成计算所需要的核心数。例如,如果我们想要在流计算应用中运行 10 个接收器,那么至少需要为应用分配 11 个 CPU 核心。所以如果在本地模式运行,不要使用local[1]。

1文件数据源

1.1 用法及说明

文件数据流:能够读取所有HDFS API兼容的文件系统文件,通过fileStream方法进行读取,Spark Streaming 将会监控 dataDirectory 目录并不断处理移动进来的文件,记住目前不支持嵌套目录。

streamingContext.textFileStream(dataDirectory)

注意事项:

1)文件需要有相同的数据格式;

2)文件进入 dataDirectory的方式需要通过移动或者重命名来实现;

3)一旦文件移动进目录,则不能再修改,即便修改了也不会读取新数据;

1.2 案例实操

(1)在HDFS上建好目录

[atguigu@hadoop102 spark]$ hadoop fs -mkdir /fileStream

(2)在/opt/module/data创建三个文件

[atguigu@hadoop102 data]$ touch a.tsv

[atguigu@hadoop102 data]$ touch b.tsv

[atguigu@hadoop102 data]$ touch c.tsv

 

添加如下数据:

Hello      atguigu

Hello      spark

(3)编写代码

package com.atguigu

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.DStream

object FileStream {

def main(args: Array[String]): Unit = {

//1.初始化Spark配置信息
Val sparkConf = new SparkConf().setMaster("local[*]")
.setAppName("StreamWordCount")

//2.初始化SparkStreamingContext
val ssc = new StreamingContext(sparkConf, Seconds(5))

//3.监控文件夹创建DStream
val dirStream = ssc.textFileStream("hdfs://hadoop102:9000/fileStream")

//4.将每一行数据做切分,形成一个个单词
val wordStreams = dirStream.flatMap(_.split("\t"))

//5.将单词映射成元组(word,1)
val wordAndOneStreams = wordStreams.map((_, 1))

//6.将相同的单词次数做统计
val wordAndCountStreams] = wordAndOneStreams.reduceByKey(_ + _)

//7.打印
wordAndCountStreams.print()

//8.启动SparkStreamingContext
ssc.start()
ssc.awaitTermination()
}
}

(4)启动程序并向fileStream目录上传文件

[atguigu@hadoop102 data]$ hadoop fs -put ./a.tsv /fileStream

[atguigu@hadoop102 data]$ hadoop fs -put ./b.tsv /fileStream

[atguigu@hadoop102 data]$ hadoop fs -put ./c.tsv /fileStream

(5)获取计算结果

-------------------------------------------

Time: 1539073810000 ms

-------------------------------------------

 

-------------------------------------------

Time: 1539073815000 ms

-------------------------------------------

(Hello,4)

(spark,2)

(atguigu,2)

 

-------------------------------------------

Time: 1539073820000 ms

-------------------------------------------

(Hello,2)

(spark,1)

(atguigu,1)

 

-------------------------------------------

Time: 1539073825000 ms

-------------------------------------------

2 RDD队列(了解)

2.1 用法及说明

测试过程中,可以通过使用ssc.queueStream(queueOfRDDs)来创建DStream,每一个推送到这个队列中的RDD,都会作为一个DStream处理。

2.2 案例实操

1)需求:循环创建几个RDD,将RDD放入队列。通过SparkStream创建Dstream,计算WordCount

2)编写代码

package com.atguigu

import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import scala.collection.mutable

object RDDStream {

def main(args: Array[String]) {

//1.初始化Spark配置信息
val conf = new SparkConf().setMaster("local[*]").setAppName("RDDStream")

//2.初始化SparkStreamingContext
val ssc = new StreamingContext(conf, Seconds(4))

//3.创建RDD队列
val rddQueue = new mutable.Queue[RDD[Int]]()

//4.创建QueueInputDStream
val inputStream = ssc.queueStream(rddQueue,oneAtATime = false)

//5.处理队列中的RDD数据
val mappedStream = inputStream.map((_,1))
val reducedStream = mappedStream.reduceByKey(_ + _)

//6.打印结果
reducedStream.print()

//7.启动任务
ssc.start()

//8.循环创建并向RDD队列中放入RDD
for (i <- 1 to 5) {
rddQueue += ssc.sparkContext.makeRDD(1 to 300, 10)
Thread.sleep(2000)
}

ssc.awaitTermination()
}
}

3)结果展示

-------------------------------------------

Time: 1539075280000 ms

-------------------------------------------

(4,60)

(0,60)

(6,60)

(8,60)

(2,60)

(1,60)

(3,60)

(7,60)

(9,60)

(5,60)

 

-------------------------------------------

Time: 1539075284000 ms

-------------------------------------------

(4,60)

(0,60)

(6,60)

(8,60)

(2,60)

(1,60)

(3,60)

(7,60)

(9,60)

(5,60)

 

-------------------------------------------

Time: 1539075288000 ms

-------------------------------------------

(4,30)

(0,30)

(6,30)

(8,30)

(2,30)

(1,30)

(3,30)

(7,30)

(9,30)

(5,30)

 

-------------------------------------------

Time: 1539075292000 ms

-------------------------------------------

3 自定义数据源

3.1 用法及说明

需要继承Receiver,并实现onStart、onStop方法来自定义数据源采集。

3.2 案例实操

1)需求:自定义数据源,实现监控某个端口号,获取该端口号内容。

2)代码实现

package com.atguigu

import java.io.{BufferedReader, InputStreamReader}
import java.net.Socket
import java.nio.charset.StandardCharsets

import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.receiver.Receiver

class CustomerReceiver(host: String, port: Int) extends Receiver[String](StorageLevel.MEMORY_ONLY) {

//最初启动的时候,调用该方法,作用为:读数据并将数据发送给Spark
override def onStart(): Unit = {
new Thread("Socket Receiver") {
override def run() {
receive()
}
}.start()
}

//读数据并将数据发送给Spark
def receive(): Unit = {

//创建一个Socket
var socket: Socket = new Socket(host, port)

//定义一个变量,用来接收端口传过来的数据
var input: String = null

//创建一个BufferedReader用于读取端口传来的数据
val reader = new BufferedReader(new InputStreamReader(socket.getInputStream, StandardCharsets.UTF_8))

//读取数据
input = reader.readLine()

//当receiver没有关闭并且输入数据不为空,则循环发送数据给Spark
while (!isStopped() && input != null) {
store(input)
input = reader.readLine()
}

//跳出循环则关闭资源
reader.close()
socket.close()

//重启任务
restart("restart")
}

override def onStop(): Unit = {}
}

3)使用自定义的数据源采集数据

package com.atguigu

import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.streaming.dstream.DStream

object FileStream {

def main(args: Array[String]): Unit = {

//1.初始化Spark配置信息
Val sparkConf = new SparkConf().setMaster("local[*]")
.setAppName("StreamWordCount")

//2.初始化SparkStreamingContext
val ssc = new StreamingContext(sparkConf, Seconds(5))

//3.创建自定义receiver的Streaming
val lineStream = ssc.receiverStream(new CustomerReceiver("hadoop102", 9999))

//4.将每一行数据做切分,形成一个个单词
val wordStreams = lineStream.flatMap(_.split("\t"))

//5.将单词映射成元组(word,1)
val wordAndOneStreams = wordStreams.map((_, 1))

//6.将相同的单词次数做统计
val wordAndCountStreams] = wordAndOneStreams.reduceByKey(_ + _)

//7.打印
wordAndCountStreams.print()

//8.启动SparkStreamingContext
ssc.start()
ssc.awaitTermination()
}
}

4 Kafka数据源(重点)

4.1 用法及说明

在工程中需要引入 Maven 工件 spark- streaming-kafka_2.10 来使用它。包内提供的 KafkaUtils 对象可以在 StreamingContext 和 JavaStreamingContext 中以你的 Kafka 消息创建出 DStream。由于 KafkaUtils 可以订阅多个主题,因此它创建出的 DStream 由成对的主题和消息组成。要创建出一个流数据,需要使用 StreamingContext 实例、一个由逗号隔开的 ZooKeeper 主机列表字符串、消费者组的名字(唯一名字),以及一个从主题到针对这个主题的接收器线程数的映射表来调用 createStream() 方法。

4.2 案例实操

需求:通过SparkStreaming从Kafka读取数据,并将读取过来的数据做简单计算(WordCount),最终打印到控制台。

(1)导入依赖

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-8_2.11</artifactId>
    <version>2.1.1</version>
</dependency>
<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>0.11.0.2</version>
</dependency>

(2)编写代码

package com.atguigu

import kafka.serializer.StringDecoder
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.dstream.ReceiverInputDStream
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}

object KafkaSparkStreaming {

def main(args: Array[String]): Unit = {

//1.创建SparkConf并初始化SSC
val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("KafkaSparkStreaming")
val ssc = new StreamingContext(sparkConf, Seconds(5))

//2.定义kafka参数
val brokers = "hadoop102:9092,hadoop103:9092,hadoop104:9092"
val topic = "source"
val consumerGroup = "spark"

//3.将kafka参数映射为map
val kafkaParam: Map[String, String] = Map[String, String](
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer",
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG -> "org.apache.kafka.common.serialization.StringDeserializer",
ConsumerConfig.GROUP_ID_CONFIG -> consumerGroup,
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG -> brokers
)

//4.通过KafkaUtil创建kafkaDSteam
val kafkaDSteam: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder](
ssc,
kafkaParam,
Set(topic),
StorageLevel.MEMORY_ONLY
)

//5.对kafkaDSteam做计算(WordCount)
kafkaDSteam.foreachRDD {
rdd => {
val word: RDD[String] = rdd.flatMap(_._2.split(" "))
val wordAndOne: RDD[(String, Int)] = word.map((_, 1))
val wordAndCount: RDD[(String, Int)] = wordAndOne.reduceByKey(_ + _)
wordAndCount.collect().foreach(println)
}
}

//6.启动SparkStreaming
ssc.start()
ssc.awaitTermination()
}
}