文章目录
- 1. 启动集群
- 2. 执行写SequenceFile文件格式代码
- 3. 执行读SequenceFile文件格式代码
- 4. 执行写SequenceFile文件格式代码(HDFS)
- 5. 执行读SequenceFile文件格式代码(HDFS)
0x00 文章内容
Hadoop支持的四种常用的文件格式:Text(csv)
、Parquet
、Avro
以及SequenceFile
,非常关键!
0x01 SequenceFile格式概念
1. SequenceFile是啥
二进制格式。
0x02 编码实现
1. 写文件完整代码
package com.shaonaiyi.hadoop.filetype.sequence;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import java.io.IOException;
import java.net.URI;
/**
* @Author shaonaiyi@163.com
* @Date 2019/12/20 11:27
* @Description Hadoop支持的文件格式之写Sequence
*/
public class SequenceFileWriter {
private static final String[] DATA = {
"shao, naiyi, bigdata, hadoop",
"naiyi, bigdata, spark",
"yi, two, a good man"
};
public static void main(String[] args) throws IOException {
String uri = "hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq";
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), configuration);
Path path = new Path(uri);
IntWritable key = new IntWritable();
Text value = new Text();
SequenceFile.Writer writer = null;
try {
writer = SequenceFile.createWriter(configuration,
SequenceFile.Writer.file(path), SequenceFile.Writer.keyClass(key.getClass()),
SequenceFile.Writer.valueClass(value.getClass()));
for (int i = 0; i < 100; i++) {
key.set(100 -i);
value.set(DATA[i % DATA.length]);
System.out.printf("[%s]\t%s\t%s\n", writer.getLength(), key, value);
writer.append(key, value);
}
} finally {
writer.close();
}
}
}
代码解读:根据配置文件、文件路径、key类型、value类型此四个参数构建SequenceFile的Writer对象,然后循环append进key和value
2. 读文件完整代码
package com.shaonaiyi.hadoop.filetype.sequence;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.util.ReflectionUtils;
import java.io.IOException;
import java.net.URI;
/**
* @Author shaonaiyi@163.com
* @Date 2019/12/20 11:28
* @Description Hadoop支持的文件格式之读Sequence
*/
public class SequenceFileReader {
public static void main(String[] args) throws IOException {
String uri = "hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq";
Configuration configuration = new Configuration();
FileSystem fs = FileSystem.get(URI.create(uri), configuration);
Path path = new Path(uri);
SequenceFile.Reader reader = null;
try {
reader = new SequenceFile.Reader(configuration, SequenceFile.Reader.file(path));
Writable key = (Writable)ReflectionUtils.newInstance(reader.getKeyClass(), configuration);
Writable value = (Writable)ReflectionUtils.newInstance(reader.getValueClass(), configuration);
long position = reader.getPosition();
while (reader.next(key, value)) {
String syncSeen = reader.syncSeen() ? "*" : "";
System.out.printf("[%s%s]\t%s\t%s\n", position, syncSeen, key, value);
position = reader.getPosition();
}
} finally {
reader.close();
}
}
}
3. 写文件完整代码(HDFS)
package com.shaonaiyi.hadoop.filetype.sequence;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat;
import org.apache.hadoop.mapreduce.task.JobContextImpl;
import org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl;
import java.io.IOException;
/**
* @Author shaonaiyi@163.com
* @Date 2019/12/20 12:53
* @Description Hadoop支持的文件格式之写Sequence(HDFS)
*/
public class MRSequenceFileWriter {
public static void main(String[] args) throws IOException, IllegalAccessException, InstantiationException, ClassNotFoundException, InterruptedException {
//1 构建一个job实例
Configuration hadoopConf = new Configuration();
Job job = Job.getInstance(hadoopConf);
//2 设置job的相关属性
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(Text.class);
job.setOutputFormatClass(SequenceFileOutputFormat.class);
//3 设置输出路径
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence"));
//4 构建JobContext
JobID jobID = new JobID("jobId", 123);
JobContext jobContext = new JobContextImpl(job.getConfiguration(), jobID);
//5 构建taskContext
TaskAttemptID attemptId = new TaskAttemptID("attemptId", 123, TaskType.REDUCE, 0, 0);
TaskAttemptContext hadoopAttemptContext = new TaskAttemptContextImpl(job.getConfiguration(), attemptId);
//6 构建OutputFormat实例
OutputFormat format = job.getOutputFormatClass().newInstance();
//7 设置OutputCommitter
OutputCommitter committer = format.getOutputCommitter(hadoopAttemptContext);
committer.setupJob(jobContext);
committer.setupTask(hadoopAttemptContext);
//8 获取writer写数据,写完关闭writer
RecordWriter<LongWritable, Text> writer = format.getRecordWriter(hadoopAttemptContext);
String value = "shao";
writer.write(new LongWritable(System.currentTimeMillis()), new Text(value));
writer.close(hadoopAttemptContext);
//9 committer提交job和task
committer.commitTask(hadoopAttemptContext);
committer.commitJob(jobContext);
}
}
4. 读文件完整代码(HDFS)
package com.shaonaiyi.hadoop.filetype.sequence;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.SequenceFileInputFormat;
import org.apache.hadoop.mapreduce.task.JobContextImpl;
import org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl;
import java.io.IOException;
import java.util.List;
import java.util.function.Consumer;
/**
* @Author shaonaiyi@163.com
* @Date 2019/12/20 14:17
* @Description Hadoop支持的文件格式之读Sequence(HDFS)
*/
public class MRSequenceFileReader {
public static void main(String[] args) throws IOException, IllegalAccessException, InstantiationException {
//1 构建一个job实例
Configuration hadoopConf = new Configuration();
Job job = Job.getInstance(hadoopConf);
//2 设置需要读取的文件全路径
FileInputFormat.setInputPaths(job, "hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence");
//3 获取读取文件的格式
SequenceFileInputFormat inputFormat = SequenceFileInputFormat.class.newInstance();
//4 获取需要读取文件的数据块的分区信息
//4.1 获取文件被分成多少数据块了
JobID jobID = new JobID("jobId", 123);
JobContext jobContext = new JobContextImpl(job.getConfiguration(), jobID);
List<InputSplit> inputSplits = inputFormat.getSplits(jobContext);
//读取每一个数据块的数据
inputSplits.forEach(new Consumer<InputSplit>() {
@Override
public void accept(InputSplit inputSplit) {
TaskAttemptID attemptId = new TaskAttemptID("jobTrackerId", 123, TaskType.MAP, 0, 0);
TaskAttemptContext hadoopAttemptContext = new TaskAttemptContextImpl(job.getConfiguration(), attemptId);
RecordReader<LongWritable, Text> reader = null;
try {
reader = inputFormat.createRecordReader(inputSplit, hadoopAttemptContext);
reader.initialize(inputSplit, hadoopAttemptContext);
while (reader.nextKeyValue()) {
System.out.println(reader.getCurrentKey());
System.out.println(reader.getCurrentValue());
}
reader.close();
} catch (IOException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
});
}
}
0x03 校验结果
1. 启动集群
a. 启动HDFS集群,
start-dfs.sh
2. 执行写SequenceFile文件格式代码
a. 直接在Win上执行,控制台会显示结果:
然后去集群也可以查看到结果:
hadoop fs -ls hdfs://master:9999/user/hadoop-sny/mr/filetype/
hadoop fs -cat hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq
b. 其实,还可以通过如下命令以Text格式查看二进制文件
hadoop fs -text hdfs://master:9999/user/hadoop-sny/mr/filetype/sequence.seq
注意,此处控制台打印的日志与写进文件的内容不一样,所以看到控制台其实是多打印了writer.getLength()
:
System.out.printf("[%s]\t%s\t%s\n", writer.getLength(), key, value);
PS:如果报权限错误:
Exception in thread "main" org.apache.hadoop.security.AccessControlException: Permission denied: user=Administrator, access=WRITE, inode="/user/hadoop-sny":hadoop-sny:supergroup:drwxr-xr-x
解决方案:需要去集群里修改权限
hadoop fs -mkdir -p hdfs://master:9999/user/hadoop-sny/mr/filetype
hadoop fs -chmod 757 hdfs://master:9999/user/hadoop-sny/mr/filetype
3. 执行读SequenceFile文件格式代码
a. 也可以得到相应的结果
4. 执行写SequenceFile文件格式代码(HDFS)
hadoop fs -ls hdfs://master:9999/user/hadoop-sny/mr/filetype/
5. 执行读SequenceFile文件格式代码(HDFS)
a. 可以看到代码里写进去的结果
对应的打印代码为:
String value = "shao";
writer.write(new LongWritable(System.currentTimeMillis()), new Text(value));
0xFF 总结
- Hadoop支持的文件格式系列:
Hadoop支持的文件格式之TextHadoop支持的文件格式之AvroHadoop支持的文件格式之ParquetHadoop支持的文件格式之SequenceFile - 项目实战中,文章:网站用户行为分析项目之会话切割(二)中使用的存储格式是
Parquet
。
作者简介:邵奈一
全栈工程师、市场洞察者、专栏编辑
| 公众号 | 微信 | 微博 | 简书 |
福利:
邵奈一 原创不易,如转载请标明出处。