torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,默认是将a中所有为1的维度删掉。也可以通过dim指定位置,删掉指定位置的维数为1的维度。
torch.unsqueeze()这个函数主要是对数据维度进行扩充。需要通过dim指定位置,给指定位置加上维数为1的维度。
我自己test的代码:
import torch
x = torch.zeros(3,2,4,1,2,1)# dimension of 3*2*4*1*2
print(x.size()) # torch.Size([3, 2, 4, 1, 2, 1])
print(x.shape)
y = torch.squeeze(x) # Returns a tensor with all the dimensions of input of size 1 removed.
print(y.size()) # torch.Size([3, 2, 4, 2])
print(y.shape)
z = torch.unsqueeze(y,dim=0)# Add a dimension of 1 in the 0th position
print(z.size()) # torch.Size([1, 3, 2, 4, 2])
print(z.shape)
z = torch.unsqueeze(y,dim=1)# Add a dimension of 1 in the 1st position
print(z.size()) # torch.Size([3, 1, 2, 4, 2])
print(z.shape)
z = torch.unsqueeze(y,dim=2)# Add a dimension of 1 in the 2nd position
print(z.size()) # torch.Size([3, 2, 1, 4, 2])
print(z.shape)
y = torch.squeeze(x,dim=0) # remove the 0th position of 1 (no 1)
print('dim=0', y.size()) # torch.Size([3, 2, 4, 1, 2, 1])
print('dim=0', y.shape)
y = torch.squeeze(x, dim=1) # remove the 1st position of 1 (no 1)
print('dim=1', y.size()) # torch.Size([3, 2, 4, 1, 2, 1])
print('dim=1', y.shape)
y = torch.squeeze(x, dim=2) # remove the 2nd position of 1 (no 1)
print('dim=2', y.size()) # torch.Size([3, 2, 4, 1, 2])
print('dim=2', y.shape)
y = torch.squeeze(x, dim=3) # remove the 3rd position of 1 (yes)
print('dim=3', y.size()) # torch.Size([3, 2, 4, 2])
print('dim=3', y.shape)
y = torch.squeeze(x, dim=4) # remove the 4th position of 1 (no 1)
print('dim=4', y.size()) # torch.Size([3, 2, 4, 1, 2, 1])
print('dim=4', y.shape)
y = torch.squeeze(x, dim=5) # remove the 5th position of 1 (yes)
print('dim=5', y.size()) # torch.Size([3, 2, 4, 1, 2])
print('dim=5', y.shape)
y = torch.squeeze(x, dim=6) # RuntimeError: Dimension out of range (expected to be in range of [-6, 5], but got 6)
print('dim=6', y.size())
print('dim=6', y.shape)