public V get(Object key) {
Segment<K,V> s; // manually integrate access methods to reduce overhead
HashEntry<K,V>[] tab;
int h = hash(key);
long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
(tab = s.table) != null) {
for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
(tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
e != null; e = e.next) {
K k;
if ((k = e.key) == key || (e.hash == h && key.equals(k)))
return e.value;
}
}
return null;
}
Put方法:
- 为输入的Key做Hash运算,得到hash值。
- 通过hash值,定位到对应的Segment对象
- 获取可重入锁
- 再次通过hash值,定位到Segment当中数组的具体位置。
- 插入或覆盖HashEntry对象。
- 释放锁。
搜索公众号Java知音,回复“2021”,送你一份Java面试题宝典)
try {
for (;;) {
if (retries++ == RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
ensureSegment(j).lock(); // force creation
}
sum = 0L;
size = 0;
overflow = false;
for (int j = 0; j < segments.length; ++j) {
Segment<K,V> seg = segmentAt(segments, j);
if (seg != null) {
sum += seg.modCount;
int c = seg.count;
if (c < 0 || (size += c) < 0)
overflow = true;
}
}
if (sum == last)
break;
last = sum;
}
} finally {
if (retries > RETRIES_BEFORE_LOCK) {
for (int j = 0; j < segments.length; ++j)
segmentAt(segments, j).unlock();
}
}
return overflow ? Integer.MAX_VALUE : size;
}
ConcurrentHashMap的Size方法是一个嵌套循环,大体逻辑如下:
- 遍历所有的Segment。
- 把Segment的元素数量累加起来。
- 把Segment的修改次数累加起来。
- 判断所有Segment的总修改次数是否大于上一次的总修改次数。如果大于,说明统计过程中有修改,重新统计,尝试次数+1;如果不是。说明没有修改,统计结束。
- 如果尝试次数超过阈值,则对每一个Segment加锁,再重新统计。
- 再次判断所有Segment的总修改次数是否大于上一次的总修改次数。由于已经加锁,次数一定和上次相等。
- 释放锁,统计结束。
可以看出JDK1.7的size计算方式有点像乐观锁和悲观锁的方式,为了尽量不锁住所有Segment,首先乐观地假设Size过程中不会有修改。当尝试一定次数,才无奈转为悲观锁,锁住所有Segment保证强一致性。
JDK1.7和JDK1.8中ConcurrentHashMap的区别
1、在JDK1.8中ConcurrentHashMap的实现方式有了很大的改变,在JDK1.7中采用的是Segment + HashEntry,而Sement继承了ReentrantLock,所以自带锁功能,而在JDK1.8中则取消了Segment,作者认为Segment太过臃肿,采用Node + CAS + Synchronized
ps:Synchronized一直以来被各种吐槽性能差,但java一直没有放弃Synchronized,也一直在改进,既然作者在这里采用了Synchronized,可见Synchronized的性能应该是有所提升的,当然只是猜想哈哈哈。。。
2、在上篇HashMap中我们知道,在JDK1.8中当HashMap的链表个数超过8时,会转换为红黑树,在ConcurrentHashMap中也不例外。这也是新能的一个小小提升。
3、在JDK1.8版本中,对于size的计算,在扩容和addCount()时已经在处理了。JDK1.7是在调用时才去计算。
为了帮助统计size,ConcurrentHashMap提供了baseCount和counterCells两个辅助变量和CounterCell辅助类,1.8中使用一个volatile类型的变量baseCount记录元素的个数,当插入新数据或则删除数据时,会通过addCount()方法更新baseCount。