训练模型第一步要有样本,抽取样本的操作有以下几种方法:

bootstrap, boosting, bagging 几种方法的联系
Bootstraping: 名字来自成语“pull up by your own bootstraps”,意思是依靠你自己的资源,称为自助法,它是一种有放回的抽样方法,它是非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法。其核心思想和基本步骤如下:
  (1) 采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。 
  (2) 根据抽出的样本计算给定的统计量T。 
  (3) 重复上述N次(一般大于1000),得到N个统计量T。 
  (4) 计算上述N个统计量T的样本方差,得到统计量的方差。

Jackknife:

bagging:bootstrap aggregating的缩写。让该学习算法训练多轮,每轮的训练集由从初始的训练集中随机取出的n个训练样本组成,某个初始训练样本在某轮训练集中可以出现多次或根本不出现,训练之后可得到一个预测函数序列 ,最终的预测函数H对分类问题采用投票方式,对回归问题采用简单平均方法对新示例进行判别。(eg:Random Forest)

boosting:

Bagging与Boosting的区别:二者的主要区别是取样方式不同。Bagging采用均匀取样,而Boosting根据错误率来取样,因此Boosting的分类精度要优于Bagging。Bagging的训练集的选择是随机的,各轮训练集之间相互独立,而Boostlng的各轮训练集的选择与前面各轮的学习结果有关;Bagging的各个预测函数没有权重,而Boosting是有权重的;Bagging的各个预测函数可以并行生成,而Boosting的各个预测函数只能顺序生成。对于象神经网络这样极为耗时的学习方法。Bagging可通过并行训练节省大量时间开销。
bagging和boosting都可以有效地提高分类的准确性。在大多数数据集中,boosting的准确性比bagging高。在有些数据集中,boosting会引起退化--- Overfit

gradient boosting(又叫Mart, Treenet):Boosting是一种思想,Gradient Boosting是一种实现Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向。如果我们的模型能够让损失函数持续的下降,则说明我们的模型在不停的改进,而最好的方式就是让损失函数在其梯度(Gradient)的方向上下降。

Random forest: 随机森林,顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。 分类树输出决策规则:投票机制,选择投票最多的类别;回归树输出决策树规则:多棵树均值。对于样本采样,采用有放回的方式,(可能出现重复采样)。这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,使得相对不容易出现over-fitting。然后进行特征采样,从M个feature中,选择m个(m << M)。分类方式:完全分裂;停止分裂condition:到达设置的最大分类深度,叶子节点样本数到达阈值。
Random forest与bagging的区别:1)Rand forest是选与输入样本的数目相同多的次数(可能一个样本会被选取多次,同时也会造成一些样本不会被选取到),而bagging一般选取比输入样本的数目少的样本;2)bagging是用全部特征来得到分类器,而Random forest是需要从全部特征中选取其中的一部分来训练得到分类器; 一般Random forest效果比bagging效果好!

stacking:经典Stacking模型是指将多种分类器组合在一起来取得更好表现的一种集成学习模型。一般情况下,Stacking模型分为两层。第一层中我们训练多个不同的模型,然后再以第一层训练的各个模型的输出作为输入来训练第二层的模型,以得到一个最终的输出。

stacking思想:比bagging的带权平均voting机制,及boosting的线性组合更折中;(eg:LR)偷图:

python做bootstrap抽样 bootstrap抽样步骤_权重