1.概念

SQL SERVER提供了两种索引:聚集索引和非聚集索引。其中聚集索引表示表中存储的数据按照索引的顺序存储,检索效率比非聚集索引高,但对数据更新影响较 大。非聚集索引表示数据存储在一个地方,索引存储在另一个地方,索引带有指针指向数据的存储位置,非聚集索引检索效率比聚集索引低,但对数据更新影响较小。

2.一个通俗的举例,说明两者的区别

其实,我们的汉语字典的正文本身就是一个聚集索引。比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序 汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部。如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就 说明您的字典中没有这个字;同样的,如果查“张”字,那您也会将您的字典翻到最后部分,因为“张”的拼音是“zhang”。也就是说,字典的正文部分本身 就是一个目录,您不需要再去查其他目录来找到您需要找的内容。我们把这种正文内容本身就是一种按照一定规则排列的目录称为“聚集索引”。

    如果您认识某个字,您可以快速地从自动中查到这个字。但您也可能会遇到您不认识的字,不知道它的发音,这时候,您就不能按照刚才的方法找到您要查的字,而 需要去根据“偏旁部首”查到您要找的字,然后根据这个字后的页码直接翻到某页来找到您要找的字。但您结合“部首目录”和“检字表”而查到的字的排序并不是 真正的正文的排序方法,比如您查“张”字,我们可以看到在查部首之后的检字表中“张”的页码是672页,检字表中“张”的上面是“驰”字,但页码却是63 页,“张”的下面是“弩”字,页面是390页。很显然,这些字并不是真正的分别位于“张”字的上下方,现在您看到的连续的“驰、张、弩”三字实际上就是他 们在非聚集索引中的排序,是字典正文中的字在非聚集索引中的映射。我们可以通过这种方式来找到您所需要的字,但它需要两个过程,先找到目录中的结果,然后 再翻到您所需要的页码。我们把这种目录纯粹是目录,正文纯粹是正文的排序方式称为“非聚集索引”。

3.索引的类型

聚集索引

非聚集索引,其又包括两种:堆上的非聚集索引、聚集表上的非聚集索引

解释一下下非聚集索引的区别(个人理解的):

1)聚集表上的非聚集索引:创建非聚集索引之前首页要创建聚集索引

2)堆上的非聚集索引:堆是在其上没有聚集索引的一个表。在这种情况下,基于行的区段、页以及行偏移量(偏移页顶部的位置)的组合创建唯一的标识符,或者称为行ID(RID)。如果没有可用的聚集键(没有聚集索引),那么RID是唯一必要的内容。堆表并不是B树结构。

(官方文档上的)

3)基础表的数据行不按非聚集键的顺序排序和存储

4)非聚集索引的叶层是由索引页而不是由数据页组成

 

4.非聚集索引的结构:

mysql中如何创建非聚集索引 sql 非聚集索引_mysql中如何创建非聚集索引


5.聚集索引实例

由于ID列是聚集索引,因此根据ID查找,B树结构的优点就充分发挥了出来,只需要2次物理读就能够定位到数据。

‘标题’列上没有索引,因此还是需要预读19次(还是聚集表扫描)才能定位到数据。

mysql中如何创建非聚集索引 sql 非聚集索引_sql_02

6.非聚集索引实例

1、因为在SQL Server中一页只是8K,页面空间有限,所以一行所包含的列数越少,它能保存的行就越多。非聚集索引通常不包含表中所有的列,它一般只包含非常少数的列。因此,一个页上将能包含比表行(所有的列)更多行的非聚集索引。因此,同样读取一页,在非聚集索引中可能包含200行,但是在表中可能只有10行,具体数据有表行的大小以及非聚集列的大小确定。

  2、非聚集索引的另一个好处是,它有一个独立于数据表的结构,所以可以被放置在不同的文件组,使用不同的I/O路径,这意味着SQL Server可以并行访问索引和表,使查找更快速。

  下面说明一下,非聚集索引的好处:

24,14,12  11,20,9   15,15,10 16,13,7 2,26,17  21,18,22  19,6,5  1,8,3  27,4,23

假设有一个单列的表,共有27行,每一页上存了3行。没有顺序,假如我们要从中查找值为5的行,那么需要的读次数为9,因为它必须扫描到最后一页,才能够确定所有页都不存在值为5的行了。

  假如建立了非聚集索引:

1,2,3  4,5,6 7,8,9 10,11,12  13,14,15 16,17,18  19,20,21  22,23,24 25,26,27


再次查找值为5的行,那么需要的读次数为2,为什么?因为非聚集索引是有顺序的,当SQL Server读取到值为6的那一行时,就知道不必再读下去了。那么如果要读取值为25的页呢?还是需要9个读操作。因为它刚巧就在最后一页。恰好这个东西,可以通过B树结构来优化。B树算法最小化了定位所需的键值访问的页面数量,从而加速了数据访问过程.


7.非聚集索引的开销

  索引给性能带来的好处有一定的代价。有索引的表需要更多的存储和内存空间容纳数据页面之外的索引页面。数据的增删改可能会花费更长的时间,需要更多的处理时间以维护不断变化的表的索引。如果一个INSERT语句添加一行到表中,那么它也必须添加一行到索引结构中。如果索引是一个聚集索引,开销可能会更大,因为行必须以正确的顺序添加到数据页面(当然分int聚集列和string聚集列会不同)。UPDATE和DELETE类似。

  虽然索引对增删改有一定的影响,但是别忘了,要UPDATE或DELETE一行的前提是必须找到一行,因此索引实际上对于有复杂WHERE条件的UPDATE或DELETE也是有帮助的。在使用索引定位一行的有效性通常能弥补更新索引所带来的额外开销。除非索引设计不合理。

关于索引的几个要点:

  1. 群集索引通常比非群集索引快(书签)。
  2. 仅在将得到高级别选择性的列(90%以上)上放置非群集索引。
  3. 所有的数据操作语言(DML:INSERT、UPDATE、DELETE、SELECT)语句可以通过索引获益,但是插入、删除和更新会因为索引而变慢。
  4. 索引会占用空间。
  5. 仅当索引中的第一列和查询相关时才使用索引。
  6. 索引的负面影响和它的正面影响一样多 - 因此只建立需要的索引。
  7. 索引可为非结构化XML数据提供结构化的数据性能,但是要记住,和其他索引一样,会涉及到系统开销。