说明:文章所示优化对某些地图有一定优化作用,运行速度可以提高2倍以上,但很大程度上会牺牲准确度,并且很多时候并不能用此方法加速运行,请在有一定A*算法代码基础上阅读。代码中piecemeal_matrix判断边界函数没有那么完美,只是提供一种参考,有兴趣的朋友可以和我一起改进。
A*算法在迷宫很复杂的情况下运行速度会很慢,甚至会和Dijkstra算法运行速度差不多,比如遇到如下这张复杂地图:
尽管只有约100*100像素,但是在我电脑上要运行10s左右时间才能计算出来(我电脑运行速度比较慢,不同电脑运行时间不同,文章测试环境均为同一台电脑)
遇到这种规则的方方正正的迷宫,我们可以运用(伪)图片缩小。不同于直接缩小图片,更可以说成对迷宫切片,防止图片缩小变糊。简单算法思路:把迷宫围墙边界作为转换后矩阵像素,类似于边缘检测,如下图x轴方向上的切片:
最终可以得到如下切片/缩小后图片:
最终结果对比:
优化前10s左右运行速度得出的图片:
优化后5s左右运行速度得出的图片:
切片优化python代码:
import numpy
import numpy as np
from numba import jit
from A_star import A_star
from PIL import Image
import time
# 把大矩阵切分成小矩阵
# jit 修饰可要可不要,jit只是为了加快程序运行速度,最好加上
@jit
def piecemeal_matrix(matrix):
length = [0, len(matrix[0]) - 1]
width = [0, len(matrix) - 1]
for i in range(1, len(matrix) - 1):
for j in range(1, len(matrix[i]) - 1):
if not matrix[i][j] and not matrix[i + 1][j] and matrix[i - 1][j] or not matrix[i][j] and not matrix[i - 1][j] and matrix[i + 1][j]:
if i not in width:
width.append(i)
if not matrix[i][j] and not matrix[i][j + 1] and matrix[i][j - 1] or not matrix[i][j] and not matrix[i][j - 1] and matrix[i][j + 1]:
if j not in length:
length.append(j)
length.sort()
width.sort()
return [length, width]
# 找到转换过后的 values
def find_values(matrix, x, y, start_point, end_point):
changed_matrix = []
for i in range(len(x[:-1])):
temp_bool = []
for j in range(len(y[:-1])):
ii = (x[i] + x[i + 1]) // 2
jj = (y[j] + y[j + 1]) // 2
temp_bool.append(matrix[ii][jj])
changed_matrix.append(temp_bool)
changed_start_point = [0, 0]
for i in range(len(x) - 1):
if x[i] <= start_point[0] < x[i + 1]:
changed_start_point[0] = i
break
for i in range(len(y) - 1):
if y[i] <= start_point[1] < y[i + 1]:
changed_start_point[1] = i
break
changed_end_point = [0, 0]
for i in range(len(x) - 1):
if x[i] <= end_point[0] < x[i + 1]:
changed_end_point[0] = i
break
for i in range(len(y) - 1):
if y[i] <= end_point[1] < y[i + 1]:
changed_end_point[1] = i
break
return [changed_matrix, changed_start_point, changed_end_point]
# 转换成实际线路
def find_road(road, x, y, start_point, end_point):
for i in range(len(road)):
road[i][0] = (x[road[i][0]] + x[road[i][0] + 1]) // 2
road[i][1] = (y[road[i][1]] + y[road[i][1] + 1]) // 2
road.insert(0, end_point)
road.append(start_point)
road = supply_road(road)
return road
# 把 road 点补充成线
def supply_road(road):
length = len(road)
for i in range(length - 1):
k = road[i + 1][0] - road[i][0]
for j in range(0, k + 1 if k > 0 else k - 1, 1 if k > 0 else -1):
road.append([road[i][0] + j, road[i][1]])
k = road[i + 1][1] - road[i][1]
for j in range(0, k + 1 if k > 0 else k - 1, 1 if k > 0 else -1):
road.append([road[i + 1][0], road[i][1] + j])
return road
def piecemeal_A_star(file_location):
image = Image.open(file_location)
# 如果本来就是黑白图片可以省去下列这条代码
matrix = np.array(image.convert("1"))
start_point = [3, 3]
end_point = [110, 110]
[y, x] = piecemeal_matrix(matrix)
[changed_matrix, changed_start_point, changed_end_point] = find_values(matrix, x, y, start_point, end_point)
# Image.fromarray(numpy.array(changed_matrix)).save("maze_changed.png")
Road = A_star(matrix=changed_matrix).run(start_point=changed_start_point, end_point=changed_end_point)
Road = find_road(Road, x, y, start_point, end_point) if Road else []
_matrix = np.ones(len(matrix[0]) * len(matrix) * 3).reshape(len(matrix), len(matrix[0]), 3)
for x in range(len(matrix)):
for y in range(len(matrix[x])):
if [x, y] in Road:
_matrix[x][y] = [255, 0, 0]
elif not matrix[x][y]:
_matrix[x][y] = [0, 0, 0]
else:
_matrix[x][y] = [255, 255, 255]
# Image.fromarray(np.uint8(_matrix)).save("maze_road.png")
if __name__ == "__main__":
begin_time = time.time()
piecemeal_A_star("blackwhite.bmp")
print(time.time()-begin_time)
优化前python代码,也可见A* 算法 Python 代码_Dilkople的博客-CSDN博客
import numpy as np
from math import sqrt
from PIL import Image
import time
class A_star:
def __init__(self, matrix, weights=1, corner_amend=1, step=float("inf"), way=["R", "L", "D", "U", "RU", "RD", "LU", "LD"], wall=0):
self.matrix = matrix
self.weights = weights
self.corner_amend = corner_amend
self.matrix_length = len(self.matrix[0])
self.matrix_width = len(self.matrix)
self.step = step
self.way = way
self.wall = wall
self.field = np.array(np.copy(self.matrix), dtype=float)
for i in range(self.matrix_width):
for j in range(self.matrix_length):
if self.field[i][j] == self.wall:
self.field[i][j] = float("inf")
def run(self, start_point, end_point):
self.fieldpointers = np.array(np.copy(self.matrix), dtype=str)
self.start_point = start_point
self.end_point = end_point
if int(self.matrix[self.start_point[0]][self.start_point[1]]) == self.wall or int(self.matrix[self.end_point[0]][self.end_point[1]] == self.wall):
exit("start or end is wall")
self.fieldpointers[self.start_point[0]][self.start_point[1]] = "S"
self.fieldpointers[self.end_point[0]][self.end_point[1]] = "G"
return self.a_star()
def a_star(self):
setopen = [self.start_point]
setopencosts = [0]
setopenheuristics = [float("inf")]
setclosed = []
setclosedcosts = []
movementdirections = self.way
while self.end_point not in setopen and self.step:
self.step -= 1
total_costs = list(np.array(setopencosts) + self.weights * np.array(setopenheuristics))
temp = np.min(total_costs)
ii = total_costs.index(temp)
if setopen[ii] != self.start_point and self.corner_amend == 1:
new_ii = self.Path_optimization(temp, ii, setopen, setopencosts, setopenheuristics)
ii = new_ii
[costs, heuristics, posinds] = self.findFValue(setopen[ii], setopencosts[ii])
setclosed = setclosed + [setopen[ii]]
setclosedcosts = setclosedcosts + [setopencosts[ii]]
setopen.pop(ii)
setopencosts.pop(ii)
setopenheuristics.pop(ii)
for jj in range(len(posinds)):
if float("Inf") != costs[jj]:
if not posinds[jj] in setclosed + setopen:
self.fieldpointers[posinds[jj][0]][posinds[jj][1]] = movementdirections[jj]
setopen = setopen + [posinds[jj]]
setopencosts = setopencosts + [costs[jj]]
setopenheuristics = setopenheuristics + [heuristics[jj]]
elif posinds[jj] in setopen:
position = setopen.index(posinds[jj])
if setopencosts[position] > costs[jj]:
setopencosts[position] = costs[jj]
setopenheuristics[position] = heuristics[jj]
self.fieldpointers[setopen[position][0]][setopen[position][1]] = movementdirections[jj]
else:
position = setclosed.index(posinds[jj])
if setclosedcosts[position] > costs[jj]:
setclosedcosts[position] = costs[jj]
self.fieldpointers[setclosed[position][0]][setclosed[position][1]] = movementdirections[jj]
if not setopen:
exit("Can't")
if self.end_point in setopen:
rod = self.findWayBack(self.end_point)
return rod
else:
exit("Can't")
def Path_optimization(self, temp, ii, setOpen, setOpenCosts, setOpenHeuristics):
[row, col] = setOpen[ii]
_temp = self.fieldpointers[row][col]
if "L" in _temp:
col -= 1
elif "R" in _temp:
col += 1
if "U" in _temp:
row -= 1
elif "D" in _temp:
row += 1
if [row, col] == self.start_point:
new_ii = ii
else:
_temp = self.fieldpointers[row][col]
[row2, col2] = [row, col]
if "L" in _temp:
col2 += self.matrix_width
elif "R" in _temp:
col2 -= self.matrix_width
if "U" in _temp:
row2 += 1
elif "D" in _temp:
row2 -= 1
if 0 <= row2 <= self.matrix_width and 0 <= col2 <= self.matrix_length:
new_ii = ii
else:
if self.fieldpointers[setOpen[ii][0]][setOpen[ii][1]] == self.fieldpointers[row][col]:
new_ii = ii
elif [row2, col2] in setOpen:
untext_ii = setOpen.index([row2, col2])
now_cost = setOpenCosts[untext_ii] + self.weights * setOpenHeuristics[untext_ii]
if temp == now_cost:
new_ii = untext_ii
else:
new_ii = ii
else:
new_ii = ii
return new_ii
def findFValue(self, currentpos, costsofar):
cost = []
heuristic = []
posinds = []
for way in self.way:
if "D" in way:
x = currentpos[0] - 1
elif "U" in way:
x = currentpos[0] + 1
else:
x = currentpos[0]
if "R" in way:
y = currentpos[1] - 1
elif "L" in way:
y = currentpos[1] + 1
else:
y = currentpos[1]
if 0 <= y <= self.matrix_length - 1 and 0 <= x <= self.matrix_width - 1:
posinds.append([x, y])
heuristic.append(sqrt((self.end_point[1] - y) ** 2 + (self.end_point[0] - x) ** 2))
cost.append(costsofar + self.field[x][y])
else:
posinds.append([0, 0])
heuristic.append(float("inf"))
cost.append(float("inf"))
return [cost, heuristic, posinds]
def findWayBack(self, goal):
road = [goal]
[x, y] = goal
while self.fieldpointers[x][y] != "S":
temp = self.fieldpointers[x][y]
if "L" in temp:
y -= 1
if "R" in temp:
y += 1
if "U" in temp:
x -= 1
if "D" in temp:
x += 1
road.append([x, y])
return road
if __name__ == "__main__":
begintime = time.time()
image = Image.open("blackwhite.bmp")
# 如果本来就是黑白图片可以省去下列这条代码
matrix = np.array(image.convert("1"))
start_point = [3, 3]
end_point = [110, 110]
Road = A_star(matrix=matrix).run(start_point, end_point)
# for i in Road:
# image.putpixel((i[1], i[0]), (255, 0, 0))
# image.save("maze_reference.png")
print(time.time()-begintime)