目录

一、效果

1、成功案例

2、经典失败案例(单字符识别成类似字符)

3、其他失败案例

二、总结

三、车牌识别总代码


一、效果

1、成功案例

opencv车牌检测 opencv识别车牌_视觉检测

 

opencv车牌检测 opencv识别车牌_opencv车牌检测_02

2、经典失败案例(单字符识别成类似字符)

 

opencv车牌检测 opencv识别车牌_人工智能_03

opencv车牌检测 opencv识别车牌_视觉检测_04

opencv车牌检测 opencv识别车牌_计算机视觉_05

3、其他失败案例

opencv车牌检测 opencv识别车牌_opencv车牌检测_06

opencv车牌检测 opencv识别车牌_opencv车牌检测_07

二、总结

车牌提取是本次项目最困难的地方

opencv车牌检测 opencv识别车牌_opencv车牌检测_07

三、车牌识别总代码

# 车牌识别
import cv2 as cv
import numpy as np
import os
from matplotlib import pyplot as plt
from PIL import Image, ImageDraw, ImageFont

# 总文件夹
List = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q',
             'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '云','京','冀','吉','宁','川','新','晋','桂','沪','津','浙','渝','湘','琼',
                 '甘','皖','粤','苏','蒙','藏','豫','贵','赣','辽','鄂','闽','陕','青','鲁','黑']
# 车牌数字列表(10)
Num_List = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
# 车牌英文列表(24)
Eng_List = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q',
             'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z']
# 车牌汉字列表(31)
Chinese_List = ['云','京','冀','吉','宁','川','新','晋','桂','沪','津','浙','渝','湘','琼',
                 '甘','皖','粤','苏','蒙','藏','豫','贵','赣','辽','鄂','闽','陕','青','鲁','黑']
final_result = []


# 得到黑底白字(白色多则返回真)
def IsWhiteMore(binary):
    white = black = 0
    height, width = binary.shape
    # 遍历每个像素
    for i in range(height):
        for j in range(width):
            if binary[i,j]==0:
                black+=1
            else:
                white+=1
    if white >= black:
        return True
    else:
        return False


# 限制图像大小(车牌)
def Limit(image):
    height, width, channel = image.shape
    # 设置权重
    weight = width/300
    # 计算输出图像的宽和高
    last_width = int(width/weight)
    last_height = int(height/weight)
    image = cv.resize(image, (last_width, last_height))
    return image


# 二-5、统计白色像素点(分别统计每一行、每一列)
def White_Statistic(image):
    ptx = []  # 每行白色像素个数
    pty = []  # 每列白色像素个数
    height, width = image.shape
    # 逐行遍历
    for i in range(height):
        num = 0
        for j in range(width):
            if(image[i][j]==255):
                num = num+1
        ptx.append(num)

    # 逐列遍历
    for i in range(width):
        num = 0
        for j in range(height):
            if (image[j][i] == 255):
                num = num + 1
        pty.append(num)

    return ptx, pty


# 二-6、绘制直方图
def Draw_Hist(ptx, pty):
    # 依次得到各行、列
    rows, cols = len(ptx), len(pty)
    row = [i for i in range(rows)]
    col = [j for j in range(cols)]
    # 横向直方图
    plt.barh(row, ptx, color='black', height=1)
    #       纵    横
    # plt.show()
    # 纵向直方图
    plt.bar(col, pty, color='black', width=1)
    #       横    纵
    # plt.show()


# 二-7-2、横向分割:上下边框
def Cut_X(ptx, rows):
    # 横向切割(分为上下两张图,分别找其波谷,确定顶和底)
    # 1、下半图波谷
    min, r = 300, 0
    for i in range(int(rows / 2)):
        if ptx[i] < min:
            min = ptx[i]
            r = i
    h1 = r  # 添加下行(作为顶)

    # 2、上半图波谷
    min, r = 300, 0
    for i in range(int(rows / 2), rows):
        if ptx[i] < min:
            min = ptx[i]
            r = i
    h2 = r  # 添加上行(作为底)

    return h1, h2


# 二-7-3、纵向分割:分割字符
def Cut_Y(pty, cols, h1, h2, binary):
    global con, final_result
    WIDTH = 33          # 经过测试,一个字符宽度约为32
    w = w1 = w2 = 0     # 前谷 字符开始 字符结束
    begin = False       # 字符开始标记
    last = 10           # 上一次的值
    con = 0             # 计数(字符)
    final_result = []   # 清空已识别的车牌

    # 纵向切割(正式切割字符)
    for j in range(int(cols)):
        # 0、极大值判断
        if pty[j] == max(pty):
            if j < 30:  # 左边(跳过)
                w2 = j
                if begin == True:
                    begin = False
                continue

            elif j > 270:  # 右边(直接收尾)
                if begin == True:
                    begin = False
                w2 = j
                b_copy = binary.copy()
                b_copy = b_copy[h1:h2, w1:w2]
                # cv.imshow('binary%d-%d' % (count, con), b_copy)
                cv.imwrite('car_characters/image%d-%d.jpg' % (count, con), b_copy)
                Template_Match(b_copy)
                con += 1
                break

        # 1、前谷(前面的波谷)
        if pty[j] < 12 and begin == False:  # 前谷判断:像素数量<12
            last = pty[j]
            w = j

        # 2、字符开始(上升)
        elif last < 12 and pty[j] > 20:
            last = pty[j]
            w1 = j
            begin = True

        # 3、字符结束
        elif pty[j] < 13 and begin == True:
            begin = False
            last = pty[j]
            w2 = j
            width = w2 - w1
            # 3-1、分割并显示(排除过小情况)
            if 10 < width < WIDTH + 3:  # 要排除掉干扰,又不能过滤掉字符”1“
                b_copy = binary.copy()
                b_copy = b_copy[h1:h2, w1:w2]
                # cv.imshow('binary%d-%d' % (count, con), b_copy)
                cv.imwrite('car_characters/image%d-%d.jpg' % (count, con), b_copy)
                Template_Match(b_copy)
                con += 1
            # 3-2、从多个贴合字符中提取单个字符
            elif width >= WIDTH + 3:
                # 统计贴合字符个数
                num = int(width / WIDTH + 0.5)  # 四舍五入
                for k in range(num):
                    # w1和w2坐标向后移(用w3、w4代替w1和w2)
                    w3 = w1 + k * WIDTH
                    w4 = w1 + (k + 1) * WIDTH
                    b_copy = binary.copy()
                    b_copy = b_copy[h1:h2, w3:w4]
                    # cv.imshow('binary%d-%d' % (count, con), b_copy)
                    cv.imwrite('car_characters/image%d-%d.jpg' % (count, con), b_copy)
                    Template_Match(b_copy)
                    con += 1

        # 4、分割尾部噪声(距离过远默认没有字符了)
        elif begin == False and (j - w2) > 30:
            break

    # 最后检查收尾情况
    if begin == True:
        w2 = 295
        b_copy = binary.copy()
        b_copy = b_copy[h1:h2, w1:w2]
        # cv.imshow('binary%d-%d' % (count, con), b_copy)
        cv.imwrite('car_characters/image%d-%d.jpg' % (count, con), b_copy)
        Template_Match(b_copy)

    # 显示识别结果(图像)
    Show_Result_Image()


# 二-7、分割车牌图像(根据直方图)
def Cut_Image(ptx, pty, binary, dilate):
    h1 = h2 = 0
    #顶  底
    begin = False        #标记开始/结束
    # 1、依次得到各行、列
    rows, cols = len(ptx), len(pty)
    row = [i for i in range(rows)]
    col = [j for j in range(cols)]

    # 2、横向分割:上下边框
    h1, h2 = Cut_X(ptx, rows)
    # cut_x = binary[h1:h2, :]
    # cv.imshow('cut_x', cut_x)

    # 3、纵向分割:分割字符
    Cut_Y(pty, cols, h1, h2, binary)


# 显示文字(中文)(用的PIL,RGB正常显示,即和opencv的RGB相反)
def Text(image, text, p, color, size):
    # cv2读取图片
    # BGR转RGB:cv2和PIL中颜色的hex码的储存顺序不同
    cv2_image = cv.cvtColor(image, cv.COLOR_RGB2BGR)
    pil_image = Image.fromarray(cv2_image)

    # PIL图片上打印汉字
    draw = ImageDraw.Draw(pil_image)  # 图片上打印
    font = ImageFont.truetype("./simhei.ttf", size, encoding="utf-8")  # 参数1:字体文件路径,参数2:字体大小
    draw.text((p[0]-60, p[1]-20), text, color, font=font)

    # PIL图片转cv2 图片
    cv2_result = cv.cvtColor(np.array(pil_image), cv.COLOR_RGB2BGR)
    # cv2.imshow("图片", cv2_result)      # 汉字窗口标题显示乱码
    # cv.imshow("photo", cv2_result)     # 输出汉字
    return cv2_result


# 显示识别结果(文字)
def Show_Result_Words(index):
    print(List[index])
    final_result.append(List[index])
    print(final_result)


# 显示识别结果(图像)
def Show_Result_Image():
    p = image_rect[0], image_rect[1]
    w, h = image_rect[2] , image_rect[3]
    # 框出车牌
    cv.rectangle(img, (p[0],p[1]), (p[0]+w, p[1]+h), (0,0,255), 2)
    # 输出字符(中文)
    result = Text(img, str(final_result), p, (255,0,0), 16)
    cv.imshow('result-%d'%count, result)
    # cv.waitKey(0)


# 一、形态学提取车牌
def Get_Licenses(image):
    global image_rect       #待返回的矩形坐标
    # 1、转灰度图
    gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
    # cv.imshow('gray', gray)

    # 2、顶帽运算
    # gray = cv.equalizeHist(gray)
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (17,17))
    tophat = cv.morphologyEx(gray, cv.MORPH_TOPHAT, kernel)
    # cv.imshow('tophat', tophat)

    # 3、Sobel算子提取y方向边缘(揉成一坨)
    y = cv.Sobel(tophat, cv.CV_16S, 1,     0)
    absY = cv.convertScaleAbs(y)
    # cv.imshow('absY', absY)

    # 4、自适应二值化(阈值自己可调)
    ret, binary = cv.threshold(absY, 75, 255, cv.THRESH_BINARY)
    # cv.imshow('binary', binary)

    # 5、开运算分割(纵向去噪,分隔)
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (1, 15))
    Open = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel)
    # cv.imshow('Open', Open)

    # 6、闭运算合并,把图像闭合、揉团,使图像区域化,便于找到车牌区域,进而得到轮廓
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (41, 15))
    close = cv.morphologyEx(Open, cv.MORPH_CLOSE, kernel)
    # cv.imshow('close', close)

    # 7、膨胀/腐蚀(去噪得到车牌区域)
    # 中远距离车牌识别
    kernel_x = cv.getStructuringElement(cv.MORPH_RECT, (25, 7))
    kernel_y = cv.getStructuringElement(cv.MORPH_RECT, (1, 11))
    # 近距离车牌识别
    # kernel_x = cv.getStructuringElement(cv.MORPH_RECT, (79, 15))
    # kernel_y = cv.getStructuringElement(cv.MORPH_RECT, (1, 31))
    # 7-1、腐蚀、膨胀(去噪)
    erode_y = cv.morphologyEx(close, cv.MORPH_ERODE, kernel_y)
    # cv.imshow('erode_y', erode_y)
    dilate_y = cv.morphologyEx(erode_y, cv.MORPH_DILATE, kernel_y)
    # cv.imshow('dilate_y', dilate_y)
    # 7-1、膨胀、腐蚀(连接)(二次缝合)
    dilate_x = cv.morphologyEx(dilate_y, cv.MORPH_DILATE, kernel_x)
    # cv.imshow('dilate_x', dilate_x)
    erode_x = cv.morphologyEx(dilate_x, cv.MORPH_ERODE, kernel_x)
    # cv.imshow('erode_x', erode_x)

    # 8、腐蚀、膨胀:去噪
    kernel_e = cv.getStructuringElement(cv.MORPH_RECT, (25, 9))
    erode = cv.morphologyEx(erode_x, cv.MORPH_ERODE, kernel_e)
    # cv.imshow('erode', erode)
    kernel_d = cv.getStructuringElement(cv.MORPH_RECT, (25, 11))
    dilate = cv.morphologyEx(erode, cv.MORPH_DILATE, kernel_d)
    # cv.imshow('dilate', dilate)

    # 9、获取外轮廓
    img_copy = image.copy()
    # 9-1、得到轮廓
    contours, hierarchy = cv.findContours(dilate, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
    # 9-2、画出轮廓并显示
    cv.drawContours(img_copy, contours, -1, (255, 0, 255), 2)
    # cv.imshow('Contours', img_copy)

    # 10、遍历所有轮廓,找到车牌轮廓
    i = 0
    for contour in contours:
        # 10-1、得到矩形区域:左顶点坐标、宽和高
        rect = cv.boundingRect(contour)
        # 10-2、判断宽高比例是否符合车牌标准,截取符合图片
        if rect[2]>rect[3]*3 and rect[2]<rect[3]*7:
            # 截取车牌并显示
            print(rect)
            image_rect = rect
            img_copy = image.copy()
            image = image[(rect[1]):(rect[1]+rect[3]), (rect[0]):(rect[0]+rect[2])] #高,宽
            try:
                # 限制大小(按照比例限制)
                image = Limit(image)
                cv.imshow('license plate%d-%d' % (count, i), image)
                cv.imwrite('car_licenses/image%d-%d.jpg'%(count, i), image)
                i += 1
                return image
            except:
                pass

    return image


# 二、直方图提取字符
def Get_Character(image):
    # 清空
    final_result = []
    # 1、中值滤波
    mid = cv.medianBlur(image, 5)
    # 2、灰度化
    gray = cv.cvtColor(mid, cv.COLOR_BGR2GRAY)
    # 3、二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_OTSU)
    # 统一得到黑底白字
    if(IsWhiteMore(binary)):     #白色部分多则为真,意味着背景是白色,需要黑底白字
        ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_OTSU | cv.THRESH_BINARY_INV)
    cv.imshow('binary', binary)

    # 4、膨胀(粘贴横向字符)
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (7,1))     #横向连接字符
    dilate = cv.dilate(binary, kernel)
    # cv.imshow('dilate', dilate)

    # 5、统计各行各列白色像素个数(为了得到直方图横纵坐标)
    ptx, pty = White_Statistic(dilate)

    # 6、绘制直方图(横、纵)
    Draw_Hist(ptx, pty)

    # 7、分割(横、纵)(横向分割边框、纵向分割字符)
    Cut_Image(ptx, pty, binary, dilate)

    # cv.waitKey(0)


# 三、模板匹配
# 原图和模板进行对比,越匹配,得分越大
def Template_Match(image):
    # 单文件夹内的最佳得分
    best_score = []
    # 遍历所有文件夹(每一个文件夹匹配)
    # (1) 汉字(首个位置只能是汉字(省))(为了节约时间)
    if con == 0:
        # 遍历34——65文件夹(汉字)
        for i in range(34,65):
            # 单个图片的得分
            score = []
            ForderPath = 'Template/' + List[i]
            # 遍历单文件夹(每一个文件匹配)
            for filename in os.listdir(ForderPath):
                # 路径
                path = 'Template/' + List[i] + '/' + filename
                # 1、得到模板
                template = cv.imdecode(np.fromfile(path, dtype=np.uint8), 1)    #彩(类似imread)
                gray = cv.cvtColor(template, cv.COLOR_RGB2GRAY)                 #灰
                ret, template = cv.threshold(gray, 0, 255, cv.THRESH_OTSU)      #二值

                # 2、原图限定大小(和模板相似)
                h, w = template.shape
                image = cv.resize(image, (w, h))

                # 3、模板匹配,得到得分(匹配度越高,得分越大)
                result = cv.matchTemplate(image, template, cv.TM_CCOEFF)
                score.append(result[0][0])          #得分(每张模板图)

            # 4、保存子文件夹的最高得分(得分越高,匹配度越高)
            best_score.append(max(score))
            # 5、根据所有文件夹的最佳得分确定下标
            index = best_score.index(max(best_score))+34


    # (2) 字母(第二个位置只能为字母)
    elif con == 1:
        # 遍历10~34文件夹(字母文件夹)
        for i in range(10,34):
            # 单个图片的得分
            score = []
            ForderPath = 'Template/' + List[i]
            # 遍历单文件夹(每一个文件匹配)
            for filename in os.listdir(ForderPath):
                # 路径
                path = 'Template/' + List[i] + '/' + filename
                # 模板
                template = cv.imdecode(np.fromfile(path, dtype=np.uint8), 1)    #彩(类似imread)
                gray = cv.cvtColor(template, cv.COLOR_RGB2GRAY)                 #灰
                ret, template = cv.threshold(gray, 0, 255, cv.THRESH_OTSU)      #二值
                h, w = template.shape
                image = cv.resize(image, (w, h))

                # 模板匹配,得到得分(匹配度越高,得分越大)
                result = cv.matchTemplate(image, template, cv.TM_CCOEFF)
                score.append(result[0][0])          #得分(每张模板图)

            # 一个文件夹的最高得分(得分越高,匹配度越高)
            best_score.append(max(score))
            # 根据所有文件夹的最佳得分确定下标
            index = best_score.index(max(best_score)) + 10


    # (3) 数字+字母
    else:
        # 遍历0~34文件夹(数字+字母)
        for i in range(34):
            # 单个图片的得分
            score = []
            ForderPath = 'Template/' + List[i]
            # 遍历单文件夹(每一个文件匹配)
            for filename in os.listdir(ForderPath):
                # 路径
                path = 'Template/' + List[i] + '/' + filename
                # 模板
                template = cv.imdecode(np.fromfile(path, dtype=np.uint8), 1)    #彩(类似imread)
                gray = cv.cvtColor(template, cv.COLOR_RGB2GRAY)                 #灰
                ret, template = cv.threshold(gray, 0, 255, cv.THRESH_OTSU)      #二值
                h, w = template.shape
                image = cv.resize(image, (w, h))

                # 模板匹配,得到得分(匹配度越高,得分越大)
                result = cv.matchTemplate(image, template, cv.TM_CCOEFF)
                score.append(result[0][0])          #得分(每张模板图)

            # 一个文件夹的最高得分(得分越高,匹配度越高)
            best_score.append(max(score))
            # 根据所有文件夹的最佳得分确定下标
            index = best_score.index(max(best_score))

    # 显示结果(文字)(每识别一个显示一次)
    Show_Result_Words(index)


if __name__ == '__main__':
    global count, img
    count=0         #计数:第几张图片
    # cv.waitKey(0)
    # 遍历文件夹中的每张图片(车)
    for car in os.listdir('cars'):
        # 1、获取路径
        path = 'cars/'+'car'+str(count)+'.jpg'
        # 2、获取图片
        img = cv.imread(path)
        image = img.copy()
        # cv.imshow('image', image)
        # 3、提取车牌
        image = Get_Licenses(image)         #形态学提取车牌
        # 4、分割字符
        Get_Character(image)

        count += 1

    cv.waitKey(0)

        一张车牌约20秒,这些算法很多可能已经逐渐被淘汰了,这里只是作为学习用途,没有太高的实际应用价值。(后期进军深度学习/机器学习,可能会对这些进行优化)。有什么好的建议大家可以提出来,共同进步,谢谢~