1 准备

1.1 数据集

kaggle上Facial Keypoints Detection 若无法获取验证码,则可访问聚数力数据集

1.2安装包准备

pip install opencv-python

cv2包安装不了解决方案:project interpreter——show all——最下面一个——+——把python路径下的site-package添加进去(由用户添加即为添加)

人脸识别模型pytorch服务器部署 pytorch 人脸关键点检测_python

2 人脸检测

复现该博主代码:手把手教你做人脸识别和关键点检测(基于tensorflow和opencv) 新建face detection.py.

import cv2


def ad_threshold(img):
    th2 = cv2.adaptiveThreshold(img, 255,
                                cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                cv2.THRESH_BINARY, 19, 4)  # 自适应二值化
    return th2


def CatchUsbVideo(window_name, camera_index):
    # 定义主函数
    cv2.namedWindow(window_name)  # 创建摄像头窗口
    cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)  # 调用摄像头(一般电脑自带摄像头index为0)

    # 调用分类(人脸识别分类器是cv一个预训练的模型,文件名为haarcascade_frontalface_alt2.xml)
    # 在我的电脑里查找就可以找到,找到后复制到当前文件夹内
    # 我的电脑的储存路径是C:\Users\dell\AppData\Roaming\Python\Python37\site-packages\cv2\data
    classfier = cv2.CascadeClassifier('F:/try/face detect/haarcascade_frontalface_alt2.xml')
    # 设置边框颜色(用于框出人脸)
    color = (0, 255, 0)

    font = cv2.FONT_HERSHEY_SIMPLEX  # 创建摄像头前置的文字框

    while cap.isOpened():
        catch, frame = cap.read()  # 读取每一帧图片

        if not catch:
            raise Exception('Check if the camera if on.')
            break
            # 转换为灰度图片
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        gray = ad_threshold(gray)  # 自适应二值化处理

        # scaleFactor 为图片缩放比例
        # minNeighbors 是至少检查为3次是人脸才作为标记,适当增大可以有效抗干扰
        # minSize 是检测的最小人脸的大小
        faceRects = classfier.detectMultiScale(
            gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
        if len(faceRects) > 0:
            # 历遍每次检测的所有脸
            for face in faceRects:
                x, y, w, h = face  # face是一个元祖,返回了分类器的检测结果,包括起始点的坐标和高度宽度

                image = frame[y - 10:y + h + 10, x - 10:x + w + 10]  # 对原图片进行裁剪

                cv2.rectangle(frame, (x - 5, y - 5), (x + w + 5, y + h + 5), color, 2)  # 绘制人脸检测的线框
                cv2.putText(frame, 'face', (x + 30, y + 30), font, 1, (255, 0, 255), 4)

        cv2.imshow(window_name, frame)  # 显示人脸检测结果
        c = cv2.waitKey(10)

        if c & 0xFF == ord('q'):
            # 按q退出
            break

        if cv2.getWindowProperty(window_name, cv2.WND_PROP_AUTOSIZE) < 1:
            # 点x退出
            break
            # 释放摄像头
    cap.release()
    cv2.destroyAllWindows()


if __name__ == "__main__":
    CatchUsbVideo("face_detect", camera_index=0)
    # camera_index 是摄像头的编号,其中笔记本前置摄像头编号为0

3 读取数据

新建read_data.py

from random import shuffle
import pandas as pd
import numpy as np
import pickle
import cv2
import os
from random import randint


class Reader(object):

    def __init__(self):

        self.train_csv = 'F:/try/face detect/Facial Keypoints Detection/training.csv'

        self.test_csv = 'F:/try/face detect/Facial Keypoints Detection/test.csv'

        self.cursor = 0

        self.names_path = 'F:/try/face detect/Facial Keypoints Detection/names.txt'

        self.data_path = 'F:/try/face detect/Facial Keypoints Detection/data.pkl'

        self.train_image_path = 'F:/try/face detect/Facial Keypoints Detection/train_image'

        self.size = 96

        if not os.path.exists(self.train_image_path):

            os.makedirs(self.train_image_path)

            self.data = self.pre_process()

        else:

            with open(self.data_path, 'rb') as f:

                self.data = pickle.load(f)

        print('There is {} in total data.'.format(len(self.data)))

        shuffle(self.data)

        with open(self.names_path, 'r') as f:

            self.names = f.read().splitlines()

        self.data_num = len(self.data)

        self.label_num = len(self.names)

    def pre_process(self):

        data = pd.read_csv(self.train_csv)
        data = data.dropna()

        cols = data.columns[:-1]

        data = data.to_dict()

        for key, value in data['Image'].items():

            data['Image'][key] = np.fromstring(value, sep=' ')

        data_names = list(data.keys())
        data_names.remove('Image')

        with open(self.names_path, 'w') as f:

            for value in data_names:
                f.writelines(value+'\n')

        labels = []

        for index in data['Image'].keys():

            label = {}

            image = data['Image'][index].reshape((96, 96))
            image_name = 'image_{}.jpg'.format(index)
            image_path = os.path.join(self.train_image_path, image_name)

            cv2.imwrite(image_path, image)

            label['image_path'] = image_path

            for point_name in data_names:
                label[point_name] = data[point_name][index]

            labels.append(label)

        with open(self.data_path, 'wb') as f:
            pickle.dump(labels, f)

        return labels

    def random_flip(self, image, points):

        if randint(0, 1):

            image = np.flip(image, axis=0)
            points[1::2] = 1 - points[1::2]

        return image, points

    def generate(self, batch_size=1):

        images = []
        points = []

        for _ in range(batch_size):

            path = self.data[self.cursor]['image_path']
            image = cv2.imread(path)
            image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

            images.append(image)

            tmp = []
            for key in self.names:

                value = self.data[self.cursor][key]
                tmp.append(value)

            points.append(tmp)

            self.cursor += 1

            if self.cursor >= self.data_num:

                self.cursor = 0
                shuffle(self.data)

        images = np.array(images).reshape(
            (batch_size, self.size, self.size, 1))
        images = images - 127.5

        points = np.array(points)
        points = points/self.size

        # images, points = self.random_flip(images, points)

        return images, points


if __name__ == "__main__":

    import matplotlib.pyplot as plt

    reader = Reader()

    for _ in range(10):

        image, point = reader.generate(1)

        image = np.squeeze(image)
        point = np.squeeze(point)

        image = (image + 127.5).astype(np.int)
        point = (point * 96).astype(np.int)

        result = image.copy()

        y_axis = point[1::2]
        x_axis = point[::2]

        color = (0, 0, 255)

        for y, x in zip(y_axis, x_axis):

            cv2.circle(result, (x, y), 1, color)

        plt.imshow(result)
        plt.show()

运行结束可以看到增加了三个文件(先前只有.csv)

人脸识别模型pytorch服务器部署 pytorch 人脸关键点检测_人脸识别模型pytorch服务器部署_02

4 训练模型

新建network.py,只是为了熟悉一下流程,所以只设置了epoch为20,原博主实际设为100,如若报错缺少什么包,conda install xxx 即可

import tensorflow as tf
from read_data import Reader
import os
import numpy as np

slim = tf.contrib.slim


class Net(object):

    def __init__(self, is_training=True):

        self.is_training = is_training

        if self.is_training:

            self.reader = Reader()

        self.batch_size = 16

        self.lr = 2e-4

        self.wd = 5e-3

        self.epoches = 20

        self.batches = 256

        self.size = 96

        self.label_num = 30

        self.x = tf.placeholder(tf.float32, [None, self.size, self.size, 1])

        self.y = tf.placeholder(tf.float32, [None, self.label_num])

        self.y_hat = self.network(self.x)

        self.model_path = './model'

        self.ckpt_path = os.path.join(self.model_path, 'model.ckpt')

        self.saver = tf.train.Saver()

    def loss_layer(self, y, y_hat):

        loss = tf.reduce_sum(tf.square(y - y_hat))

        return loss

    def network(self, inputs):

        with tf.variable_scope('net'):

            with slim.arg_scope([slim.conv2d],
                                activation_fn=tf.nn.relu,
                                weights_regularizer=slim.l2_regularizer(self.wd)):

                # Block init
                net = slim.conv2d(inputs, 1024, [3, 3],
                                  2, scope='conv_init', padding='SAME')

                # Block 1
                net = slim.repeat(net, 2, slim.conv2d,
                                  64, [3, 3], scope='conv1', padding='SAME')
                net = slim.max_pool2d(
                    net, [2, 2], scope='pool1', padding='SAME')

                net = tf.layers.batch_normalization(
                    net, trainable=self.is_training, name='BN_block1')

                # Block 2
                net = slim.repeat(net, 2, slim.conv2d,
                                  128, [3, 3], scope='conv2')
                net = slim.max_pool2d(
                    net, [2, 2], scope='pool2', padding='SAME')

                net = tf.layers.batch_normalization(
                    net, trainable=self.is_training, name='BN_block2')

                # Block 3
                net = slim.repeat(net, 3, slim.conv2d,
                                  256, [3, 3], scope='conv3')
                net = slim.max_pool2d(
                    net, [2, 2], scope='pool3', padding='SAME')

                net = tf.layers.batch_normalization(
                    net, trainable=self.is_training, name='BN_block3')

                # Block 4
                net = slim.repeat(net, 3, slim.conv2d,
                                  512, [3, 3], scope='conv4')
                net = slim.max_pool2d(
                    net, [2, 2], scope='pool4', padding='SAME')

                net = tf.layers.batch_normalization(
                    net, trainable=self.is_training, name='BN_block4')

                # Block 5
                net = slim.repeat(net, 3, slim.conv2d,
                                  512, [3, 3], scope='conv5')

                net = tf.layers.batch_normalization(
                    net, trainable=self.is_training, name='BN_block5')

                # Block 6
                net = slim.conv2d(net, 1024, [3, 3],
                                  2, scope='conv6')

                net = tf.layers.batch_normalization(
                    net, trainable=self.is_training, name='BN_block6')

                net = tf.layers.flatten(net)

                logits = tf.layers.dense(net, self.label_num)

                if self.is_training:

                    logits = tf.layers.dropout(logits)

                # logits = tf.nn.tanh(logits)

                return logits

    def train_net(self):

        if not os.path.exists(self.model_path):
            os.makedirs(self.model_path)

        self.loss = self.loss_layer(self.y, self.y_hat)

        self.optimizer = tf.compat.v1.train.AdamOptimizer(self.lr)

        self.train_step = self.optimizer.minimize(self.loss)

        with tf.Session() as sess:

            sess.run(tf.compat.v1.global_variables_initializer())

            ckpt = tf.train.get_checkpoint_state(self.model_path)

            if ckpt and ckpt.model_checkpoint_path:
                # 如果保存过模型,则在保存的模型的基础上继续训练
                self.saver.restore(sess, ckpt.model_checkpoint_path)
                print('Model Reload Successfully!')

            for epoch in range(self.epoches):

                loss_list = []

                for batch in range(self.batch_size):

                    images, labels = self.reader.generate(self.batch_size)

                    feed_dict = {
                        self.x: images,
                        self.y: labels
                    }

                    loss_value, _ = sess.run(
                        [self.loss, self.train_step], feed_dict)

                    loss_list.append(loss_value)

                loss = np.mean(np.array(loss_list))

                print('epoch:{} loss:{}'.format(epoch, loss))

                with open('./losses.txt', 'a') as f:
                    f.write(str(loss)+'\n')

            self.saver.save(sess, self.ckpt_path)

    def test_net(self, image, sess):

        image = image.reshape((1, self.size, self.size, 1)) - 127.5

        points = sess.run(self.y_hat, feed_dict={self.x: image})

        points = (points * self.size).astype(np.int)

        return np.squeeze(points)


if __name__ == '__main__':

    import cv2
    import matplotlib.pyplot as plt

    net = Net()

    net.train_net()

    with open('./losses.txt', 'r') as f:

        losses = f.read().splitlines()

    losses = [eval(v) for v in losses]

    plt.plot(losses)
    plt.title('loss')
    plt.show()

运行代码过程中可以看到

人脸识别模型pytorch服务器部署 pytorch 人脸关键点检测_python_03


训练过程中生成的相应文件,model中保存了训练的模型,loss.txt中保存了训练的loss值

人脸识别模型pytorch服务器部署 pytorch 人脸关键点检测_tensorflow_04


生成的loss曲线如图

人脸识别模型pytorch服务器部署 pytorch 人脸关键点检测_tensorflow_05

5 笔记本摄像头读取视频进行识别

新建keypoint.py

import cv2
import tensorflow as tf
from network import Net
import numpy as np


class FaceDetertor(object):

    def __init__(self):

        self.model_path = 'F:/try/face detect/model'

        self.net = Net(is_training=False)

        self.size = 96

    def ad_threshold(self, img):

        th2 = cv2.adaptiveThreshold(img, 255,
                                    cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                    cv2.THRESH_BINARY, 19, 4)  # 自适应二值化
        return th2

    def CatchUsbVideo(self, window_name, camera_index):

        # 定义主函数

        cv2.namedWindow(window_name)  # 创建摄像头窗口

        cap = cv2.VideoCapture(camera_index)  # 调用摄像头(一般电脑自带摄像头index为0)

        # 调用分类(人脸识别分类器是cv一个预训练的模型,文件名为haarcascade_frontalface_alt2.xml)
        # 在我的电脑里查找就可以找到,找到后复制到当前文件夹内
        # 我的电脑的储存路径是C:\Users\dell\AppData\Roaming\Python\Python37\site-packages\cv2\data
        classfier = cv2.CascadeClassifier('F:/try/face detect//haarcascade_frontalface_alt2.xml')
        # 设置边框颜色(用于框出人脸)
        color = (0, 255, 0)
        font = cv2.FONT_HERSHEY_SIMPLEX  # 创建摄像头前置的文字框
        with tf.Session() as sess:

            sess.run(tf.compat.v1.global_variables_initializer())

            ckpt = tf.train.get_checkpoint_state(self.model_path)

            if ckpt and ckpt.model_checkpoint_path:

                # 如果保存过模型,则在保存的模型的基础上继续训练
                self.net.saver.restore(sess, ckpt.model_checkpoint_path)

                print('Model Reload Successfully!')

            while cap.isOpened():
                catch, frame = cap.read()  # 读取每一帧图片
                if not catch:
                    raise Exception('Check if the camera if on.')
                    break

                # 转换为灰度图片
                gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                gray = self.ad_threshold(gray)  # 自适应二值化处理

                # scaleFactor 为图片缩放比例
                # minNeighbors 是至少检查为3次是人脸才作为标记,适当增大可以有效抗干扰
                # minSize 是检测的最小人脸的大小
                faceRects = classfier.detectMultiScale(
                    gray, scaleFactor=1.2, minNeighbors=2, minSize=(32, 32))

                if len(faceRects) > 0:
                    # 历遍每次检测的所有脸

                    for face in faceRects:
                        x, y, w, h = face  # face是一个元祖,返回了分类器的检测结果,包括起始点的坐标和高度宽度
                        image = frame[y-10:y+h+10, x-10:x+w+10]  # 对原图片进行裁剪

                        cv2.rectangle(frame, (x-5, y-5), (x+w+5, y+h+5),
                                      color, 2)  # 绘制人脸检测的线框

                        cv2.putText(frame, 'face', (x + 30, y + 30),
                                    font, 1, (255, 0, 255), 4)

                        image_x = cv2.resize(cv2.cvtColor(
                            image, cv2.COLOR_BGR2GRAY), (self.size, self.size))

                        points = self.net.test_net(image_x, sess)

                        points_x = points[::2] / self.size * w + x
                        points_y = points[1::2] / self.size * h + y

                        points_x = points_x.astype(np.int)
                        points_y = points_y.astype(np.int)

                        for x_, y_ in zip(points_x, points_y):

                            cv2.circle(frame, (x_, y_), 2, (0, 0, 255), -1)


                cv2.imshow(window_name, frame)  # 显示人脸检测结果
                c = cv2.waitKey(10)

                if c & 0xFF == ord('q'):
                    # 按q退出
                    break

                if cv2.getWindowProperty(window_name, cv2.WND_PROP_AUTOSIZE) < 1:
                    # 点x退出
                    break

        # 释放摄像头
        cap.release()
        cv2.destroyAllWindows()


if __name__ == "__main__":

    Detertor = FaceDetertor()

    Detertor.CatchUsbVideo("face_detect", camera_index=0)

    # camera_index 是摄像头的编号,其中笔记本前置摄像头编号为0

成功!!