原标题:大数据工程师是做什么的?需要掌握哪些技能?

数据挖掘工程师、大数据专家、数据研究员、用户分析专家等都可统称为“大数据工程师”。


大数据工程师有不少细分方向,不同的方向需要具备不同的知识结构,通常情况下大数据工程师分为四个具体的工作领域,分别是大数据底层平台研发、大数据应用开发、大数据分析和大数据运维。

大数据工程师是做什么的?

分析历史、预测未来、优化选择,这是大数据工程师在“玩数据”时最重要的三大任务:

找出过去事件的特征:

大数据工程师一个很重要的工作,就是通过分析数据来找出过去事件的特征。找出过去事件的特征,最大的作用是可以帮助企业更好地认识消费者。通过分析用户以往的行为轨迹,就能够了解这个人,并预测他的行为。

预测未来可能发生的事情:

通过引入关键因素,大数据工程师可以预测未来的消费趋势。

找出最优化的结果:

根据不同企业的业务性质,大数据工程师可以通过数据分析来达到不同的目的。

在工作岗位上,大数据工程师需要基于Hadoop,Spark等构建数据分析平台,进行设计、开发分布式计算业务。负责大数据平台(Hadoop,HBase,Spark等)集群环境的搭建,性能调优和日常维护。负责数据仓库设计,数据ETL的设计、开发和性能优化。参与构建大数据平台,依托大数据技术建设用户画像。

除开以上是需要负责处理的工作,还需要负责分析新的数据需求,完成数据处理的设计(文档)和实现。对大数据应用产品设计及解决方案设计,通过大数据挖掘用户需求。负责数据处理程序设计框架改善,数据处理性能优化, 系统数据处理的能力提高等


大数据工程师需要掌握哪些技能?

由于国内的大数据工作还处在一个有待开发的阶段,因此能从其中挖掘出多少价值完全取决于工程师的个人能力。

已经身处这个行业的专家给出了一些人才需求的大体框架,包括要有计算机编码能力、数学及统计学相关背景;学历并不是最主要的因素,能有大规模处理数据的经验并且有喜欢在数据海洋中寻宝的好奇心会更适合这个工作。此之,一个优秀的大数据工程师要具备一定的逻辑分析能力,并能迅速定位某个商业问题的关键属性和决定因素。

学习能力能帮助大数据工程师快速适应不同的项目,并在短时间内成为这个领域的数据专家;沟通能力则能让他们的工作开展地更顺利,因为大数据工程师的工作主要分为两种方式:由市场部驱动和由数据分析部门驱动,前者需要常常向产品经理了解开发需求,后者则需要找运营部了解数据模型实际转化的情况。


大数据应用开发工程师是大数据领域一个比较热门的岗位,有大量的传统应用需要进行大数据改造,因此大数据应用开发岗位有较多的人才需求。这个岗位需要掌握的知识结构包括大数据平台体系结构,比如目前常见的Hadoop、Spark平台,以及众多组件的功能和应用,另外还需要掌握至少一门编程语言,比如Java、Python、Scala等。

大数据分析工程师是大数据领域非常重要的岗位,因为大数据的核心之一是数据价值化,而数据价值化的核心则在于数据的分析和应用。大数据分析工程师需要掌握的知识结构包括算法设计、编程语言以及呈现工具,算法设计是大数据分析师需要掌握的重点内容,而编程语言的作用则是完成算法的实现。另外,大数据分析师还需要掌握一些常见的分析工具。

大数据运维工程师的主要工作内容是搭建大数据平台、部署大数据功能组件、配置网络环境和硬件环境、维护大数据平台,大数据运维工程师需要具备的知识结构包括计算机网络、大数据平台体系结构、编程语言(编写运维脚本)等,通常情况下,大数据运维工程师也需要对数据库有深入的了解。


由于目前大数据人才匮乏,对于公司来说,很难招聘到合适的人才:既要有高学历,同时最好还有大规模数据处理经验。因此很多企业会通过内部挖掘。职业发展路径上,大多数公司的数据部门一般都是扁平化的层级模式,大致分为数据分析师、资深研究员、部门总监3个级别。大公司可能按照应用领域的维度来划分不同团队,而在小公司则需要身兼数职。加米谷大数据培训。