目录

  • 1 设备监控数据
  • 1.1 创建 Topic
  • 1.2 模拟数据
  • 2 基于DataFrame分析
  • 3 基于SQL分析
  • 4 时间概念
  • 5 event-time 窗口分析
  • 6 event-time 窗口生成
  • 7 延迟数据处理
  • 7.1 延迟数据
  • 7.2 Watermarking 水位
  • 7.3 官方案例演示

1 设备监控数据

在物联网时代,大量的感知器每天都在收集并产生着涉及各个领域的数据。物联网提供源源不断的数据流,使实时数据分析成为分析数据的理想工具。

物联网数据用时序数据库还是用ES好 物联网实时数据处理_数据


模拟一个智能物联网系统的数据统计分析,产生设备数据发送到Kafka,结构化流Structured

Streaming实时消费统计。对物联网设备状态信号数据,实时统计分析:

  • 1)、信号强度大于30的设备;
  • 2)、各种设备类型的数量;
  • 3)、各种设备类型的平均信号强度;

编写程序模拟生成物联网设备监控数据,发送到Kafka Topic中,此处为了演示字段较少,实际
生产项目中字段很多。

1.1 创建 Topic

启动Kafka Broker服务,创建Topic【search-log-topic】,命令如下所示:

# 启动Zookeeper
/export/server/zookeeper/bin/zkServer.sh start
# 启动Kafka Broker
/export/server/kafka/bin/kafka-server-start.sh -daemon /export/server/kafka/config/server.properties
rm -rf /export/server/kafka/logs/*
# 创建topic
/export/server/kafka/bin/kafka-topics.sh --create --zookeeper node1.oldlu.cn:2181/kafka200 --replication-fa
ctor 1 --partitions 3 --topic iotTopic
# 模拟生产者
/export/server/kafka/bin/kafka-console-producer.sh --broker-list node1.oldlu.cn:9092 --topic iotTopic
# 模拟消费者
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1.oldlu.cn:9092 --topic iotTopic
--from-beginning
# 删除topic
/export/server/kafka/bin/kafka-topics.sh --delete --zookeeper node1.oldlu.cn:2181/kafka200 --topic iotTopic

1.2 模拟数据

模拟设备监控日志数据,字段信息封装到CaseClass样例类【DeviceData】类,代码如下

package cn.oldlu.spark.iot

/**
 * 物联网设备发送状态数据
 *
 * @param device     设备标识符ID
 * @param deviceType 设备类型,如服务器mysql, redis, kafka或路由器route
 * @param signal     设备信号
 * @param time       发送数据时间
 */
case class DeviceData(
                       device: String, //
                       deviceType: String, //
                       signal: Double, //
                       time: Long //
                     )

模拟产生日志数据类【MockIotDatas】具体代码如下:

import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.kafka.common.serialization.StringSerializer
import org.json4s.jackson.Json
import scala.util.Random

object MockIotDatas {
  def main(args: Array[String]): Unit = {
    // 发送Kafka Topic
    val props = new Properties()
    props.put("bootstrap.servers", "node1.oldlu.cn:9092")
    props.put("acks", "1")
    props.put("retries", "3")
    props.put("key.serializer", classOf[StringSerializer].getName)
    props.put("value.serializer", classOf[StringSerializer].getName)
    val producer = new KafkaProducer[String, String](props)
    val deviceTypes = Array(
      "db", "bigdata", "kafka", "route", "bigdata", "db", "bigdata", "bigdata", "bigdata"
    )
    val random: Random = new Random()
    while (true) {
      val index: Int = random.nextInt(deviceTypes.length)
      val deviceId: String = s"device_${(index + 1) * 10 + random.nextInt(index + 1)}"
      val deviceType: String = deviceTypes(index)
      val deviceSignal: Int = 10 + random.nextInt(90)
      // 模拟构造设备数据
      val deviceData = DeviceData(deviceId, deviceType, deviceSignal, System.currentTimeMillis())
      // 转换为JSON字符串
      val deviceJson: String = new Json(org.json4s.DefaultFormats).write(deviceData)
      println(deviceJson)
      Thread.sleep(100 + random.nextInt(500))
      val record = new ProducerRecord[String, String]("iotTopic", deviceJson)
      producer.send(record)
    }
    // 关闭连接
    producer.close()
  }
}

相当于大机房中各个服务器定时发送相关监控数据至Kafka中,服务器部署服务有数据库db、大
数据集群bigdata、消息队列kafka及路由器route等等,数据样本:

{"device":"device_50","deviceType":"bigdata","signal":91.0,"time":1590660338429}
{"device":"device_20","deviceType":"bigdata","signal":17.0,"time":1590660338790}
{"device":"device_32","deviceType":"kafka","signal":93.0,"time":1590660338908}
{"device":"device_82","deviceType":"bigdata","signal":72.0,"time":1590660339380}
{"device":"device_32","deviceType":"kafka","signal":10.0,"time":1590660339972}
{"device":"device_96","deviceType":"bigdata","signal":18.0,"time":1590660343554}

2 基于DataFrame分析

按照业务需求,从Kafka消费日志数据,基于DataFrame数据结构调用函数分析,代码如下:

package cn.oldlu.spark.iot

import org.apache.spark.sql.streaming.{OutputMode, StreamingQuery}
import org.apache.spark.sql.types.{DoubleType, LongType}
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
 * 对物联网设备状态信号数据,实时统计分析:
 * 1)、信号强度大于30的设备
 * 2)、各种设备类型的数量
 * 3)、各种设备类型的平均信号强度
 */
object IotStreamingOnline {
  def main(args: Array[String]): Unit = {
    // 1. 构建SparkSession会话实例对象,设置属性信息
    val spark: SparkSession = SparkSession.builder()
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      .master("local[3]")
      .config("spark.sql.shuffle.partitions", "3")
      .getOrCreate()
    // 导入隐式转换和函数库
    import org.apache.spark.sql.functions._
    import spark.implicits._
    // 2. 从Kafka读取数据,底层采用New Consumer API
    val iotStreamDF: DataFrame = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "node1.oldlu.cn:9092")
      .option("subscribe", "iotTopic")
      // 设置每批次消费数据最大值
      .option("maxOffsetsPerTrigger", "100000")
      .load()
    // 3. 对获取数据进行解析,封装到DeviceData中
    val etlStreamDF: DataFrame = iotStreamDF
      // 获取value字段的值,转换为String类型
      .selectExpr("CAST(value AS STRING)")
      // 将数据转换Dataset
      .as[String] // 内部字段名为value
      // 过滤数据
      .filter(line => null != line && line.trim.length > 0)
      // 解析JSON数据:{"device":"device_65","deviceType":"db","signal":12.0,"time":1589718910796}
      .select(
        get_json_object($"value", "$.device").as("device_id"),
        get_json_object($"value", "$.deviceType").as("device_type"),
        get_json_object($"value", "$.signal").cast(DoubleType).as("signal"),
        get_json_object($"value", "$.time").cast(LongType).as("time")
      )
    // 4. 依据业务,分析处理
    // TODO: signal > 30 所有数据,按照设备类型 分组,统计数量、平均信号强度
    val resultStreamDF: DataFrame = etlStreamDF
      // 信号强度大于10
      .filter($"signal" > 30)
      // 按照设备类型 分组
      .groupBy($"device_type")
      // 统计数量、评价信号强度
      .agg(
        count($"device_type").as("count_device"),
        round(avg($"signal"), 2).as("avg_signal")
      )
    // 5. 启动流式应用,结果输出控制台
    val query: StreamingQuery = resultStreamDF.writeStream
      .outputMode(OutputMode.Complete())
      .format("console")
      .option("numRows", "10")
      .option("truncate", "false")
      .start()
    query.awaitTermination()
    query.stop()
  }
}

其中使用函数get_json_object提取JSON字符串中字段值,将最终结果打印控制台。

3 基于SQL分析

按照业务需求,从Kafka消费日志数据,提取字段信息,将DataFrame注册为临时视图,编写
SQL执行分析,代码如下:

package cn.oldlu.spark.iot

import org.apache.spark.sql.streaming.{OutputMode, StreamingQuery}
import org.apache.spark.sql.types.{DoubleType, LongType}
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
 * 对物联网设备状态信号数据,实时统计分析,基于SQL编程
 * 1)、信号强度大于30的设备
 * 2)、各种设备类型的数量
 * 3)、各种设备类型的平均信号强度
 */
object IotStreamingOnlineSQL {
  def main(args: Array[String]): Unit = {
    // 1. 构建SparkSession会话实例对象,设置属性信息
    val spark: SparkSession = SparkSession.builder()
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      .master("local[3]")
      .config("spark.sql.shuffle.partitions", "3")
      .getOrCreate()
    import org.apache.spark.sql.functions._
    import spark.implicits._
    // 2. 从Kafka读取数据,底层采用New Consumer API
    val iotStreamDF: DataFrame = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", "node1.oldlu.cn:9092")
      .option("subscribe", "iotTopic")
      // 设置每批次消费数据最大值
      .option("maxOffsetsPerTrigger", "100000")
      .load()
    // 3. 对获取数据进行解析,封装到DeviceData中
    val etlStreamDF: DataFrame = iotStreamDF
      // 获取value字段的值,转换为String类型
      .selectExpr("CAST(value AS STRING)")
      // 将数据转换Dataset
      .as[String] // 内部字段名为value
      // 过滤数据
      .filter(line => null != line && line.trim.length > 0)
      // 解析JSON数据:{"device":"device_65","deviceType":"db","signal":12.0,"time":1589718910796}
      .select(
        get_json_object($"value", "$.device").as("device_id"),
        get_json_object($"value", "$.deviceType").as("device_type"),
        get_json_object($"value", "$.signal").cast(DoubleType).as("signal"),
        get_json_object($"value", "$.time").cast(LongType).as("time")
      )
    // 4. 依据业务,分析处理
    // TODO: signal > 30 所有数据,按照设备类型 分组,统计数量、平均信号强度
    // 4.1 注册DataFrame为临时视图
    etlStreamDF.createOrReplaceTempView("view_tmp_stream_iots")
    // 4.2 编写SQL执行查询
    val resultStreamDF: DataFrame = spark.sql(
      """
        |SELECT
        | device_type, COUNT(device_type) AS count_device, ROUND(AVG(signal), 2) AS avg_signal
        |FROM view_tmp_stream_iots
        |WHERE signal > 30 GROUP BY device_type
        |""".stripMargin)
    // 5. 启动流式应用,结果输出控制台
    val query: StreamingQuery = resultStreamDF.writeStream
      .outputMode(OutputMode.Complete())
      .foreachBatch { (batchDF: DataFrame, batchId: Long) =>
        println("===========================================")
        println(s"BatchId = ${batchId}")
        println("===========================================")
        if (!batchDF.isEmpty) batchDF.coalesce(1).show(20, truncate = false)
      }
      .start()
    query.awaitTermination()
    query.stop()
  }
}

运行流式应用,结果如下图所示:

物联网数据用时序数据库还是用ES好 物联网实时数据处理_物联网数据用时序数据库还是用ES好_02

4 时间概念

在SparkStreaming中窗口统计分析:Window Operation(设置窗口大小WindowInterval和滑动大小SlideInterval),按照Streaming 流式应用接收数据的时间进行窗口设计的,其实是不符合实际应用场景的。
例如,在物联网数据平台中,每个设备产生的数据,其中包含数据产生的时间,然而数据需要
经过一系列采集传输才能被流式计算框架处理:SparkStreaming,此过程需要时间的,再按照处理
时间来统计业务的时候,准确性降低,存在不合理性。
在结构化流Structured Streaming中窗口数据统计时间是基于数据本身事件时间EventTime字
段统计,更加合理性,官方文档:

http://spark.apache.org/docs/2.4.5/structured-streaming-programming-guide.html#window-operations-on-event-time

在Streaming流式数据处理中,按照时间处理数据,其中时间有三种概念:

  • 1)、事件时间EventTime,表示数据本身产生的时间,该字段在数据本身中;
  • 2)、注入时间IngestionTime,表示数据到达流式系统时间,简而言之就是流式处理系统接收到
    数据的时间;
  • 3)、处理时间ProcessingTime,表示数据被流式系统真正开始计算操作的时间。不同流式计算框架支持时间不一样,SparkStreaming框架仅仅支持处理时间ProcessTime,StructuredStreaming支持事件时间和处理时间,Flink框架支持三种时间数据操作,实际项目中往往针对【事件时间EventTime】进行数据处理操作,更加合理化。

5 event-time 窗口分析

基于事件时间窗口聚合操作:基于窗口的聚合(例如每分钟事件数)只是事件时间列上特殊类型的分组和聚合,其中每个时间窗口都是一个组,并且每一行可以属于多个窗口/组。事件时间EventTime是嵌入到数据本身中的时间,数据实际真实产生的时间。例如,如果希望获得每分钟由物联网设备生成的事件数,那么可能希望使用生成数据的时间(即数据中的事件时间event time),而不是Spark接收数据的时间(receive time/archive time)。

这个事件时间很自然地用这个模型表示,设备中的每个事件(Event)都是表中的一行(Row),而事件时间(Event Time)是行中的一列值(Column Value)。

因此,这种基于事件时间窗口的聚合查询既可以在静态数据集(例如,从收集的设备事件日志中)上定义,也可以在数据流上定义,从而使用户的使用更加容易。修改词频统计程序,数据流包含每行数据以及生成每行行的时间。希望在10分钟的窗口内对单词进行计数,每5分钟更新一次,如下图所示:

物联网数据用时序数据库还是用ES好 物联网实时数据处理_kafka_03


单词在10分钟窗口【12:00-12:10、12:05-12:15、12:10-12:20】等之间接收的单词中计数。注意,

【12:00-12:10】表示处理数据的事件时间为12:00之后但12:10之前的数据。思考一下,12:07的一条数据,应该增加对应于两个窗口12:00-12:10和12:05-12:15的计数。基于事件时间窗口统计有两个参数索引:分组键(如单词)和窗口(事件时间字段)。

物联网数据用时序数据库还是用ES好 物联网实时数据处理_spark_04


为了演示案例,将上述案例中的每5分钟统计最近10分钟窗口改为每5秒统计最近10秒窗口数

据,测试数据集:

2019-10-12 09:00:02,cat dog
2019-10-12 09:00:03,dog dog
2019-10-12 09:00:07,owl cat
2019-10-12 09:00:11,dog
2019-10-12 09:00:13,owl

案例中三个时间范围,说明如下:

1、触发时间间隔,trigger interval:5秒 (案例:5分钟)
2、事件时间窗口大小,window interval:10秒(案例:10分钟)
3、滑动大小,slider interval:5秒(案例:5分钟)

官方案例演示代码如下:

import java.sql.Timestamp
import org.apache.spark.sql.streaming.{OutputMode, StreamingQuery, Trigger}
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
 * 基于Structured Streaming 模块读取TCP Socket读取数据,进行事件时间窗口统计词频WordCount,将结果打印到控制台
 * TODO:每5秒钟统计最近10秒内的数据(词频:WordCount)
 *
 * EventTime即事件真正生成的时间:
 * 例如一个用户在10:06点击 了一个按钮,记录在系统中为10:06
 * 这条数据发送到Kafka,又到了Spark Streaming中处理,已经是10:08,这个处理的时间就是process Time。
 *
 * 测试数据:
 * 2019-10-12 09:00:02,cat dog
 * 2019-10-12 09:00:03,dog dog
 * 2019-10-12 09:00:07,owl cat
 * 2019-10-12 09:00:11,dog
 * 2019-10-12 09:00:13,owl
 */
object StructuredWindow {
  def main(args: Array[String]): Unit = {
    // 1. 构建SparkSession实例对象,传递sparkConf参数
    val spark: SparkSession = SparkSession.builder()
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      .master("local[2]")
      .config("spark.sql.shuffle.partitions", "2")
      .getOrCreate()
    import org.apache.spark.sql.functions._
    import spark.implicits._
    // 2. 使用SparkSession从TCP Socket读取流式数据
    val inputStreamDF: DataFrame = spark.readStream
      .format("socket")
      .option("host", "node1.oldlu.cn")
      .option("port", 9999)
      .load()
    // 3. 针对获取流式DStream进行词频统计
    val resultStreamDF = inputStreamDF
      // 将DataFrame转换为Dataset操作,Dataset是类型安全,强类型
      .as[String]
      .filter(line => null != line && line.trim.length > 0)
      // 将每行数据进行分割单词: 2019-10-12 09:00:02,cat dog
      .flatMap { line =>
        val arr = line.trim.split(",")
        arr(1).split("\\s+").map(word => (Timestamp.valueOf(arr(0)), word))
      }
      // 设置列的名称
      .toDF("insert_timestamp", "word")
      // TODO:设置基于事件时间(event time)窗口 -> insert_timestamp, 每5秒统计最近10秒内数据
      /*
      1. 先按照窗口分组、2. 再对窗口中按照单词分组、 3. 最后使用聚合函数聚合
      */
      .groupBy(
        window($"insert_timestamp", "10 seconds", "5 seconds"), $"word"
      ).count()
      .orderBy($"window") // 按照窗口字段降序排序
    /*
    root
    |-- window: struct (nullable = true)
    | |-- start: timestamp (nullable = true)
    | |-- end: timestamp (nullable = true)
    |-- word: string (nullable = true)
    |-- count: long (nullable = false)
    */
    //resultStreamDF.printSchema()
    // 4. 将计算的结果输出,打印到控制台
    val query: StreamingQuery = resultStreamDF.writeStream
      .outputMode(OutputMode.Complete())
      .format("console")
      .option("numRows", "100")
      .option("truncate", "false")
      .trigger(Trigger.ProcessingTime("5 seconds"))
      .start()
    query.awaitTermination()
    query.stop()
  }
}

运行上述基于事件时间Event Time窗口统计流式应用,演示效果图如下所示:

物联网数据用时序数据库还是用ES好 物联网实时数据处理_数据_05

6 event-time 窗口生成

Structured Streaming中如何依据EventTime事件时间生成窗口的呢?查看类TimeWindowing源码中生成窗口规则:

org.apache.spark.sql.catalyst.analysis.TimeWindowing
// 窗口个数
/* 最大的窗口数 = 向上取整(窗口长度/滑动步长) */
maxNumOverlapping <- ceil(windowDuration / slideDuration)
for (i <- 0 until maxNumOverlapping)
/**
timestamp是event-time 传进的时间戳
startTime是window窗口参数,默认是0 second 从时间的0s
含义:event-time从1970年...有多少个滑动步长,如果说浮点数会向上取整
*/
windowId <- ceil((timestamp - startTime) / slideDuration)
/**
windowId * slideDuration 向上取能整除滑动步长的时间
(i - maxNumOverlapping) * slideDuration 每一个窗口开始时间相差一个步长
*/
windowStart <- windowId * slideDuration + (i - maxNumOverlapping) * slideDuration + startTime
windowEnd <- windowStart + windowDuration
return windowStart, windowEnd

将【(event-time向上取 能整除 滑动步长的时间) - (最大窗口数×滑动步长)】作为"初始窗口"

的开始时间,然后按照窗口滑动宽度逐渐向时间轴前方推进,直到某个窗口不再包含该event-time

为止,最终以"初始窗口"与"结束窗口"之间的若干个窗口作为最终生成的 event-time 的时间窗口。

物联网数据用时序数据库还是用ES好 物联网实时数据处理_kafka_06


每个窗口的起始时间start与结束时间end都是前闭后开(左闭右开)的区间,因此初始窗口和结束窗口都不会包含 event-time,最终不会被使用。假设数据为【2019-08-14 10:50:00, dog】,按照上述规则计算窗口示意图如下:

物联网数据用时序数据库还是用ES好 物联网实时数据处理_数据_07


得到窗口如下:

物联网数据用时序数据库还是用ES好 物联网实时数据处理_kafka_08

7 延迟数据处理

Structed Streaming与Spark Streaming相比一大特性就是支持基于数据中的时间戳的数据处理。也就是在处理数据时,可以对记录中的eventTime事件时间字段进行考虑。因为eventTime更好的代表数据本身的信息,且可以借助eventTime处理比预期晚到达的数据,但是需要有一个限度(阈值),不能一直等,应该要设定最多等多久。

7.1 延迟数据

在很多流计算系统中,数据延迟到达(the events arrives late to the application)的情况很常见,并且很多时候是不可控的,因为很多时候是外围系统自身问题造成的。Structured Streaming可以保证一条旧的数据进入到流上时,依然可以基于这些“迟到”的数据重新计算并更新计算结果。

物联网数据用时序数据库还是用ES好 物联网实时数据处理_物联网数据用时序数据库还是用ES好_09


上图中在12:04(即事件时间)生成的单词可能在12:11被应用程序接收,此时,应用程序应使用时间12:04而不是12:11更新窗口12:00-12:10的旧计数。但是会出现如下两个问题:

  • 问题一:延迟数据计算是否有价值
  1. 如果某些数据,延迟很长时间(如30分钟)才到达流式处理系统,数据还需要再次计算吗?
    计算的结果还有价值吗?原因在于流式处理系统处理数据关键核心在于实时性;
  2. 实践表明,流计算关注的是近期数据,更新一个很早之前的状态往往已经不再具有很大的业务价值;
  • 问题二:以前状态保存浪费资源
  1. 实时统计来说,如果保存很久以前的数据状态,很多时候没有作用的,反而浪费大量资源;
    Spark 2.1引入的watermarking允许用户指定延迟数据的阈值,也允许引擎清除掉旧的状态。即根据watermark机制来设置和判断消息的有效性,如可以获取消息本身的时间戳,然后根据该时间戳来判断消息的到达是否延迟(乱序)以及延迟的时间是否在容忍的范围内(延迟的数据是否处理)。

7.2 Watermarking 水位

水位watermarking官方定义:

lets the engine automatically track the current event time in the data and attempt to clean up old state accordingly.

翻译:让Spark SQL引擎自动追踪数据中当前事件时间EventTime,依据规则清除旧的状态数据。通过指定event-time列(上一批次数据中EventTime最大值)和预估事件的延迟时间上限(Threshold)来定义一个查询的水位线watermark。

Watermark = MaxEventTime - Threshod
  • 第一点:执行第一批次数据时,Watermarker为0,所以此批次中所有数据都参与计算;
  • 第二点:Watermarker值只能逐渐增加,不能减少;
  • 第三点:Watermark机制主要解决处理聚合延迟数据和减少内存中维护的聚合状态;
  • 第四点:设置Watermark以后,输出模式OutputMode只能是Append和Update;
    如下方式设置阈值Threshold,计算每批次数据执行时的水位Watermark:
  • 物联网数据用时序数据库还是用ES好 物联网实时数据处理_数据_10


看一下官方案例:词频统计WordCount,设置阈值Threshold为10分钟,每5分钟触发执行一次。

物联网数据用时序数据库还是用ES好 物联网实时数据处理_kafka_11

  • 延迟到达但没有超过watermark:(12:08, dog)
    在12:20触发执行窗口(12:10-12:20)数据中,(12:08, dog) 数据是延迟数据,阈值Threshold设定为10分钟,此时水位线【Watermark = 12:14 - 10m = 12:04】,因为12:14是上个窗口(12:05-12:15)中接收到的最大的事件时间,代表目标系统最后时刻的状态,由于12:08在12:04之后,因此被视为“虽然迟到但尚且可以接收”的数据而被更新到了结果表中,也就是(12:00 - 12:10, dog, 2)和(12:05 - 12:11,dog, 3)。
  • 物联网数据用时序数据库还是用ES好 物联网实时数据处理_spark_12


  • 超出watermark:(12:04, donkey)
    在12:25触发执行窗口(12:15-12:25)数据中,(12:04, donkey)数据是延迟数据,上个窗口中接收到最大的事件时间为12:21,此时水位线【Watermark = 12:21 - 10m = 12:11】,而(12:04, donkey)比这个值还要早,说明它”太旧了”,所以不会被更新到结果表中了。
  • 物联网数据用时序数据库还是用ES好 物联网实时数据处理_数据_13

  • 设置水位线Watermark以后,不同输出模式OutputMode,结果输出不一样:
  • Update模式:总是倾向于“尽可能早”的将处理结果更新到sink,当出现迟到数据时,早期的某个计算结果将会被更新;
  • Append模式:推迟计算结果的输出到一个相对较晚的时刻,确保结果是稳定的,不会再被更新,
    比如:12:00 - 12:10窗口的处理结果会等到watermark更新到12:11之后才会写入到sink。如果用于接收处理结果的sink不支持更新操作,则只能选择Append模式。

7.3 官方案例演示

编写代码,演示官方案例,如下几点注意:

1、该outputMode为update模式,即只会输出那些有更新的数据!!
2、该开窗窗口长度为10 min,步长5 min,水印为eventtime-10 min,(需理解开窗规则)
3、官网案例trigger(Trigger.ProcessingTime("5 minutes")),但是测试的时候不建议使用这个
4、未输出数据不代表已经在内存中被剔除,只是由于update模式的原因
5、建议比对append理解水印

测试数据:

dog,2019-10-10 12:00:07
owl,2019-10-10 12:00:08
dog,2019-10-10 12:00:14
cat,2019-10-10 12:00:09
cat,2019-10-10 12:00:15
dog,2019-10-10 12:00:08
owl,2019-10-10 12:00:13
owl,2019-10-10 12:00:21
owl,2019-10-10 12:00:17

具体案例代码如下:

import java.sql.Timestamp
import org.apache.spark.sql.streaming.{OutputMode, StreamingQuery, Trigger}
import org.apache.spark.sql.{DataFrame, SparkSession}

/**
 * 基于Structured Streaming 读取TCP Socket读取数据,事件时间窗口统计词频,将结果打印到控制台
 * TODO:每5秒钟统计最近10秒内的数据(词频:WordCount),设置水位Watermark时间为10秒
 * dog,2019-10-10 12:00:07
 * owl,2019-10-10 12:00:08
 * dog,2019-10-10 12:00:14
 * cat,2019-10-10 12:00:09
 * cat,2019-10-10 12:00:15
 * dog,2019-10-10 12:00:08
 * owl,2019-10-10 12:00:13
 * owl,2019-10-10 12:00:21
 * owl,2019-10-10 12:00:17
 */
object StructuredWatermarkUpdate {
  def main(args: Array[String]): Unit = {
    // 1. 构建SparkSession实例对象,传递sparkConf参数
    val spark: SparkSession = SparkSession.builder()
      .appName(this.getClass.getSimpleName.stripSuffix("$"))
      .master("local[2]")
      .config("spark.sql.shuffle.partitions", "2")
      .getOrCreate()
    // b. 导入隐式转换及函数库
    import org.apache.spark.sql.functions._
    import spark.implicits._
    // 2. 使用SparkSession从TCP Socket读取流式数据
    val inputStreamDF: DataFrame = spark.readStream
      .format("socket")
      .option("host", "node1.oldlu.cn")
      .option("port", 9999)
      .load()
    // 3. 针对获取流式DStream设置EventTime窗口及Watermark水位限制
    val resultStreamDF = inputStreamDF
      // 将DataFrame转换为Dataset操作,Dataset是类型安全,强类型
      .as[String]
      // 过滤无效数据
      .filter(line => null != line && line.trim.length > 0)
      // 将每行数据进行分割单词: 2019-10-12 09:00:02,cat dog
      .map { line =>
        val arr = line.trim.split(",")
        (arr(0), Timestamp.valueOf(arr(1)))
      }
      // 设置列的名称
      .toDF("word", "time")
      // TODO:设置水位Watermark
      .withWatermark("time", "10 seconds")
      // TODO:设置基于事件时间(event time)窗口 -> time, 每5秒统计最近10秒内数据
      .groupBy(
        window($"time", "10 seconds", "5 seconds"),
        $"word"
      ).count()
    // 4. 将计算的结果输出,打印到控制台
    val query: StreamingQuery = resultStreamDF.writeStream
      .outputMode(OutputMode.Update())
      .format("console")
      .option("numRows", "100")
      .option("truncate", "false")
      .trigger(Trigger.ProcessingTime("5 seconds"))
      .start() // 流式DataFrame,需要启动
    // 查询器一直等待流式应用结束
    query.awaitTermination()
    query.stop()
  }
}