elasticsearch之ik分词器的基本操作

 

前言

  • 首先将elascticsearchkibana服务重启,让插件生效。
  • 然后地址栏输入http://localhost:5601,在Dev Tools中的Console界面的左侧输入命令,再点击绿色的执行按钮执行。

第一个ik示例

来个简单的示例。

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "上海自来水来自海上"
}

右侧就显示出结果了如下所示:

{
  "tokens" : [
    {
      "token" : "上海",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "自来水",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "自来",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "水",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "来自",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "海上",
      "start_offset" : 7,
      "end_offset" : 9,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

docker es中文分词 es ik分词器使用_docker es中文分词

那么你可能对开始的analyzer:ik_max_word有一丝的疑惑,这个家伙是干嘛的呀?我们就来看看这个家伙到底是什么鬼!

ik_max_word

现在有这样的一个索引:

PUT ik1
{
  "mappings": {
    "doc": {
      "dynamic": false,
      "properties": {
        "content": {
          "type": "text",
          "analyzer": "ik_max_word"
        }
      }
    }
  }
}

上例中,ik_max_word参数会将文档做最细粒度的拆分,以穷尽尽可能的组合。
接下来为该索引添加几条数据:

PUT ik1/doc/1
{
  "content":"今天是个好日子"
}
PUT ik1/doc/2
{
  "content":"心想的事儿都能成"
}
PUT ik1/doc/3
{
  "content":"我今天不活了"
}

现在让我们开始查询,随便查!

GET ik1/_search
{
  "query": {
    "match": {
      "content": "心想"
    }
  }
}

查询结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "心想的事儿都能成"
        }
      }
    ]
  }
}

成功的返回了一条数据。我们再来以今天为条件来查询。

GET ik1/_search
{
  "query": {
    "match": {
      "content": "今天"
    }
  }
}

结果如下:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "今天是个好日子"
        }
      },
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "我今天不活了"
        }
      }
    ]
  }
}

上例的返回中,成功的查询到了两条结果。
ik_max_word对应还有另一个参数。让我们一起来看下。

ik_smart

ik_max_word对应的是ik_smart参数,该参数将文档作最粗粒度的拆分。

GET _analyze
{
  "analyzer": "ik_smart",
  "text": "今天是个好日子"
}

上例中,我们以最粗粒度的拆分文档。
结果如下:

{
  "tokens" : [
    {
      "token" : "今天是",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "个",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "好日子",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

再来看看以最细粒度的拆分文档。

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "今天是个好日子"
}

结果如下:

{
  "tokens" : [
    {
      "token" : "今天是",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "今天",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "是",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "个",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "好日子",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "日子",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

由上面的对比可以发现,两个参数的不同,所以查询结果也肯定不一样,视情况而定用什么粒度。
在基本操作方面,除了粗细粒度,别的按照之前的操作即可,就像下面两个短语查询和短语前缀查询一样。

ik之短语查询

ik中的短语查询参照之前的短语查询即可。

GET ik1/_search
{
  "query": {
    "match_phrase": {
      "content": "今天"
    }
  }
}

结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "今天是个好日子"
        }
      },
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "我今天不活了"
        }
      }
    ]
  }
}

ik之短语前缀查询

同样的,我们第2部分的快速上手部分的操作在ik中同样适用。

GET ik1/_search
{
  "query": {
    "match_phrase_prefix": {
      "content": {
        "query": "今天好日子",
        "slop": 2
      }
    }
  }
}

结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "今天是个好日子"
        }
      },
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "我今天不活了"
        }
      }
    ]
  }
}

欢迎斧正,that's all

 

 

 




前言

  • 首先将elascticsearchkibana服务重启,让插件生效。
  • 然后地址栏输入http://localhost:5601,在Dev Tools中的Console界面的左侧输入命令,再点击绿色的执行按钮执行。

第一个ik示例

来个简单的示例。

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "上海自来水来自海上"
}

右侧就显示出结果了如下所示:

{
  "tokens" : [
    {
      "token" : "上海",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "自来水",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "自来",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "水",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "来自",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "海上",
      "start_offset" : 7,
      "end_offset" : 9,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

docker es中文分词 es ik分词器使用_docker es中文分词

那么你可能对开始的analyzer:ik_max_word有一丝的疑惑,这个家伙是干嘛的呀?我们就来看看这个家伙到底是什么鬼!

ik_max_word

现在有这样的一个索引:

PUT ik1
{
  "mappings": {
    "doc": {
      "dynamic": false,
      "properties": {
        "content": {
          "type": "text",
          "analyzer": "ik_max_word"
        }
      }
    }
  }
}

上例中,ik_max_word参数会将文档做最细粒度的拆分,以穷尽尽可能的组合。
接下来为该索引添加几条数据:

PUT ik1/doc/1
{
  "content":"今天是个好日子"
}
PUT ik1/doc/2
{
  "content":"心想的事儿都能成"
}
PUT ik1/doc/3
{
  "content":"我今天不活了"
}

现在让我们开始查询,随便查!

GET ik1/_search
{
  "query": {
    "match": {
      "content": "心想"
    }
  }
}

查询结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 1,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "2",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "心想的事儿都能成"
        }
      }
    ]
  }
}

成功的返回了一条数据。我们再来以今天为条件来查询。

GET ik1/_search
{
  "query": {
    "match": {
      "content": "今天"
    }
  }
}

结果如下:

{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "今天是个好日子"
        }
      },
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "我今天不活了"
        }
      }
    ]
  }
}

上例的返回中,成功的查询到了两条结果。
ik_max_word对应还有另一个参数。让我们一起来看下。

ik_smart

ik_max_word对应的是ik_smart参数,该参数将文档作最粗粒度的拆分。

GET _analyze
{
  "analyzer": "ik_smart",
  "text": "今天是个好日子"
}

上例中,我们以最粗粒度的拆分文档。
结果如下:

{
  "tokens" : [
    {
      "token" : "今天是",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "个",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "好日子",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

再来看看以最细粒度的拆分文档。

GET _analyze
{
  "analyzer": "ik_max_word",
  "text": "今天是个好日子"
}

结果如下:

{
  "tokens" : [
    {
      "token" : "今天是",
      "start_offset" : 0,
      "end_offset" : 3,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "今天",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "是",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "个",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "CN_CHAR",
      "position" : 3
    },
    {
      "token" : "好日子",
      "start_offset" : 4,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "日子",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 5
    }
  ]
}

由上面的对比可以发现,两个参数的不同,所以查询结果也肯定不一样,视情况而定用什么粒度。
在基本操作方面,除了粗细粒度,别的按照之前的操作即可,就像下面两个短语查询和短语前缀查询一样。

ik之短语查询

ik中的短语查询参照之前的短语查询即可。

GET ik1/_search
{
  "query": {
    "match_phrase": {
      "content": "今天"
    }
  }
}

结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "今天是个好日子"
        }
      },
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "我今天不活了"
        }
      }
    ]
  }
}

ik之短语前缀查询

同样的,我们第2部分的快速上手部分的操作在ik中同样适用。

GET ik1/_search
{
  "query": {
    "match_phrase_prefix": {
      "content": {
        "query": "今天好日子",
        "slop": 2
      }
    }
  }
}

结果如下:

{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 5,
    "successful" : 5,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : 2,
    "max_score" : 0.2876821,
    "hits" : [
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "1",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "今天是个好日子"
        }
      },
      {
        "_index" : "ik1",
        "_type" : "doc",
        "_id" : "3",
        "_score" : 0.2876821,
        "_source" : {
          "content" : "我今天不活了"
        }
      }
    ]
  }
}

欢迎斧正,that's all