任务要求

我们使用卷积神经网络来实现验证码识别案列,具体流程如下:

1、使用python的captcha模块生成验证码图片。
2、使用tensorflow框架搭建神经网络模型。
3、将数据喂入搭建好的神经网络模型中。
4、保存训练好的网络模型。

下面我们来看具体的细节。
一、定义字符集,验证码一般为数字、字母。练习的时候可以先只考虑数字的情况,这样模型训练的会快些。代码如下:

number = ['0','1','2','3','4','5','6','7','8','9']  
alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']  
ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']

二、下面我们要从给定的字符集中选择4个字符,生成160*60的验证码图片,并将图片转化为numpy数组。然后将选择的四个字符生成为词向量形式。
1、生成图片并转化为数组。

def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):  
    captcha_text = []  
    for i in range(captcha_size):  
        c = random.choice(char_set)  
        captcha_text.append(c)  
    return captcha_text


def gen_captcha_text_and_image():  
    image = ImageCaptcha()  
   
    captcha_text = random_captcha_text()  
    captcha_text = ''.join(captcha_text)  
   
    captcha = image.generate(captcha_text)  
    #image.write(captcha_text, captcha_text + '.jpg')   
   
    captcha_image = Image.open(captcha)
    captcha_image = captcha_image.convert('L')
    captcha_image = captcha_image.point(lambda i: 255 - i)
    #将图片取反,黑色变为白色,白色变为黑色,这样模型收敛更快
    captcha_image = np.array(captcha_image)
    return captcha_text, captcha_image

2、传入验证码文本,转化为词向量的形式,假设我们现在只使用数字集0-9。那么就是10分类,我们用一个长度为10的向量来表示一个数字,比如[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]表示数字0,[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]表示数字1。我们有四个字符,所以是一个410的矩阵,再将这个矩阵拉平为一维的,就是长度为40的向量。
如果我们现在采用数字加大小写字母为字符集,那就是4
(10+26+26),再将矩阵拉平,就是长度为248的向量。代码如下:

def text2vec(text):  
    text_len = len(text)  
    if text_len > MAX_CAPTCHA:  
        raise ValueError('验证码最长4个字符')  
   
    vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)  
    def char2pos(c):  
        if c =='_':  
            k = 62  
            return k  
        k = ord(c)-48  
        if k > 9:  
            k = ord(c) - 55  
            if k > 35:  
                k = ord(c) - 61  
                if k > 61:  
                    raise ValueError('No Map')   
        return k  
    for i, c in enumerate(text):  
        idx = i * CHAR_SET_LEN + char2pos(c)  
        vector[idx] = 1  
    return vector

三、以上代码每次只生成一张验证码,当然每次传入网络一个样本也可以,但我们习惯一次喂入多个样本,所以我们还要一次性生成多张图片传入网络。代码如下。

# 生成一个训练batch  
def get_next_batch(batch_size=128):  
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])  
    batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])  
   
    # 有时生成图像大小不是(60, 160, 3)  
    def wrap_gen_captcha_text_and_image():  
        while True:  
            text, image = gen_captcha_text_and_image()  
            if image.shape == (60, 160, 3):  
                return text, image  
   
    for i in range(batch_size):  
        text, image = wrap_gen_captcha_text_and_image()  
        image = convert2gray(image)  
   
        batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128  mean为0  
        batch_y[i,:] = text2vec(text)  
   
    return batch_x, batch_y
def convert2gray(img):  
    if len(img.shape) > 2:  
        gray = np.mean(img, -1)  
        # 上面的转法较快,正规转法如下  
        # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]  
        # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b  
        return gray  
    else:  
        return img

四、现在图片生成好了,对应的词向量也生成好了,要开始搭建网络了,我们采用三层卷积,一层全连接层,最后输出成,代码如下:

# 定义CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):  
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])  
   
    #w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #  
    #w_c2_alpha = np.sqrt(2.0/(3*3*32))   
    #w_c3_alpha = np.sqrt(2.0/(3*3*64))   
    #w_d1_alpha = np.sqrt(2.0/(8*32*64))  
    #out_alpha = np.sqrt(2.0/1024)  
   
    # 3 conv layer  
    w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))  
    b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))  
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))  
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv1 = tf.nn.dropout(conv1, keep_prob)  
   
    w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))  
    b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))  
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))  
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv2 = tf.nn.dropout(conv2, keep_prob)  
   
    w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))  
    b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))  
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))  
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv3 = tf.nn.dropout(conv3, keep_prob)

    # Fully connected layer  
    w_d = tf.Variable(w_alpha*tf.random_normal([8*32*40, 1024]))  
    b_d = tf.Variable(b_alpha*tf.random_normal([1024]))  
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])  
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))  
    dense = tf.nn.dropout(dense, keep_prob)  
   
    w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))  
    b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))  
    out = tf.add(tf.matmul(dense, w_out), b_out)  
    #out = tf.nn.softmax(out)  
    return out

五、网络构建好了,现在需要构建损失函数,以及准确率等等,并开始训练了。具体代码如下:

# 训练  
def train_crack_captcha_cnn():  
    output = crack_captcha_cnn()  
    # loss  
    #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y))  
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output, Y))  
        # 最后一层用来分类的softmax和sigmoid有什么不同?  
    # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰  
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)  
   
    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])  
    max_idx_p = tf.argmax(predict, 2)  
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)  
    correct_pred = tf.equal(max_idx_p, max_idx_l)  
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))  

    saver = tf.train.Saver()  
    with tf.Session() as sess:  
        sess.run(tf.global_variables_initializer())  
   
        step = 0  
        while True:  
            batch_x, batch_y = get_next_batch(64)  
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})  
            print(step, loss_)  
              
            # 每100 step计算一次准确率  
            if step % 10 == 0:  
                batch_x_test, batch_y_test = get_next_batch(100)
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})  
                print(step, acc)  
                # 如果准确率大于50%,保存模型,完成训练  
                if acc > 0.50:  
                    saver.save(sess, "./model/crack_capcha.model", global_step=step)  
                    break

            step += 1

整个结构基本就是这样,如果只采用数字集的话,基本一千次迭代,半小时左右,准确率就能到90%以上。如果采用数字加大小写字母,时间会稍微久一点。下面是完整的代码:

import numpy as np  
import tensorflow as tf
from captcha.image import ImageCaptcha
import numpy as np  
import matplotlib.pyplot as plt  
from PIL import Image  
import random   

number = ['0','1','2','3','4','5','6','7','8','9']  
#alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']  
#ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']  

#def random_captcha_text(char_set=number+alphabet+ALPHABET, captcha_size=4):  
def random_captcha_text(char_set=number, captcha_size=4):
    captcha_text = []
    for i in range(captcha_size):  
        c = random.choice(char_set)  
        captcha_text.append(c)  
    return captcha_text  
   

def gen_captcha_text_and_image():  
    image = ImageCaptcha()  
   
    captcha_text = random_captcha_text()  
    captcha_text = ''.join(captcha_text)  
   
    captcha = image.generate(captcha_text)  
    #image.write(captcha_text, captcha_text + '.jpg')   
   
    captcha_image = Image.open(captcha)  
    captcha_image = np.array(captcha_image)  
    return captcha_text, captcha_image  

def convert2gray(img):  
    if len(img.shape) > 2:  
        gray = np.mean(img, -1)  
        # 上面的转法较快,正规转法如下  
        # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2]  
        # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b  
        return gray  
    else:  
        return img  

   
  
def text2vec(text):  
    text_len = len(text)  
    if text_len > MAX_CAPTCHA:  
        raise ValueError('验证码最长4个字符')  
   
    vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)  

    def char2pos(c):  
        if c =='_':  
            k = 62  
            return k  
        k = ord(c)-48  
        if k > 9:  
            k = ord(c) - 55  
            if k > 35:  
                k = ord(c) - 61  
                if k > 61:  
                    raise ValueError('No Map')   
        return k  

    for i, c in enumerate(text):  
        idx = i * CHAR_SET_LEN + int(c)  
        vector[idx] = 1  
    return vector


# 传入验证码字符文本,生成对应的词向量
# def text2vec(text):
#     text_len = len(text)
#     if text_len > MAX_CAPTCHA:
#         raise ValueError('验证码最长4个字符')
#     vector = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
#     def char2pos(c):
#         if c =='_':
#             k = 62
#             return k
#         k = ord(c)-48
#         if k > 9:
#             k = ord(c) - 55
#             if k > 35:
#                 k = ord(c) - 61
#                 if k > 61:
#                     raise ValueError('No Map')
#         return k
#     for i, c in enumerate(text):
#         idx = i * CHAR_SET_LEN + char2pos(c)
#         vector[idx] = 1
#     return vector



# 向量转回文本  
def vec2text(vec):  
    """
    char_pos = vec.nonzero()[0]  
    text=[]  
    for i, c in enumerate(char_pos):  
        char_at_pos = i #c/63  
        char_idx = c % CHAR_SET_LEN  
        if char_idx < 10:  
            char_code = char_idx + ord('0')  
        elif char_idx <36:  
            char_code = char_idx - 10 + ord('A')  
        elif char_idx < 62:  
            char_code = char_idx-  36 + ord('a')  
        elif char_idx == 62:  
            char_code = ord('_')  
        else:  
            raise ValueError('error')  
        text.append(chr(char_code)) 
    """
    text=[]
    char_pos = vec.nonzero()[0]
    for i, c in enumerate(char_pos):  
        number = i % 10
        text.append(str(number)) 
             
    return "".join(text)  
   
""" 
#向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有 
vec = text2vec("F5Sd") 
text = vec2text(vec) 
print(text)  # F5Sd 
vec = text2vec("SFd5") 
text = vec2text(vec) 
print(text)  # SFd5 
"""  
   
# 生成一个训练batch  
def get_next_batch(batch_size=128):  
    batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])  
    batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])  
   
    # 有时生成图像大小不是(60, 160, 3)  
    def wrap_gen_captcha_text_and_image():  
        while True:  
            text, image = gen_captcha_text_and_image()  
            if image.shape == (60, 160, 3):  
                return text, image  
   
    for i in range(batch_size):  
        text, image = wrap_gen_captcha_text_and_image()  
        image = convert2gray(image)  

        #将二维数组拉成一维数组
        batch_x[i,:] = image.flatten() / 255 # (image.flatten()-128)/128  mean为0  
        batch_y[i,:] = text2vec(text)  
   
    return batch_x, batch_y  
   

   
# 定义CNN ,这里使用三层卷积和一层全连接操作,最后输出
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):  
    x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])  
   
    #w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) #  
    #w_c2_alpha = np.sqrt(2.0/(3*3*32))   
    #w_c3_alpha = np.sqrt(2.0/(3*3*64))   
    #w_d1_alpha = np.sqrt(2.0/(8*32*64))  
    #out_alpha = np.sqrt(2.0/1024)  
   
    # 3 conv layer  
    w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))  
    b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))  
    conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1))  
    conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv1 = tf.nn.dropout(conv1, keep_prob)  
   
    w_c2 = tf.Variable(w_alpha*tf.random_normal([3, 3, 32, 64]))  
    b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))  
    conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2))  
    conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv2 = tf.nn.dropout(conv2, keep_prob)  
   
    w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))  
    b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))  
    conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3))  
    conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  
    conv3 = tf.nn.dropout(conv3, keep_prob)  
   
    # Fully connected layer  
    w_d = tf.Variable(w_alpha*tf.random_normal([8*20*64, 1024]))  
    b_d = tf.Variable(b_alpha*tf.random_normal([1024]))  
    dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])  
    dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))  
    dense = tf.nn.dropout(dense, keep_prob)  
   
    w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))  
    b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))  
    out = tf.add(tf.matmul(dense, w_out), b_out)   
    return out  
   
# 网络搭建好之后需要构建损失函数,以及准确率,并开始训练
def train_crack_captcha_cnn():  
    output = crack_captcha_cnn()  
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(output, Y))  
    optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)  
    predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])  
    max_idx_p = tf.argmax(predict, 2)  
    max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)  
    correct_pred = tf.equal(max_idx_p, max_idx_l)  
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))  
   
    saver = tf.train.Saver()  
    with tf.Session() as sess:  
        sess.run(tf.global_variables_initializer())  
   
        step = 0  
        while True:  
            batch_x, batch_y = get_next_batch(64)  
            _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75})  
            print(step, loss_)  
              
            # 每100 step计算一次准确率  
            if step % 10 == 0:  
                batch_x_test, batch_y_test = get_next_batch(100)  
                acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.})  
                print(step, acc)  
                # 如果准确率大于50%,保存模型,完成训练  
                if acc > 0.50:  
                    saver.save(sess, "./model/crack_capcha.model", global_step=step)  
                    break  
   
            step += 1

def crack_captcha(captcha_image):  
    output = crack_captcha_cnn()  
   
    saver = tf.train.Saver()  
    with tf.Session() as sess:  
        saver.restore(sess, "./model/crack_capcha.model-810") 
   
        predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)  
        text_list = sess.run(predict, feed_dict={X: [captcha_image], keep_prob: 1})  
        text = text_list[0].tolist()  
        return text


if __name__ == '__main__':
    train = 1
    if train == 0:
        number = ['0','1','2','3','4','5','6','7','8','9']  
        #alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
        #ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
        
        text, image = gen_captcha_text_and_image()  
        print("验证码图像channel:", image.shape)  # (60, 160, 3)  
        # 图像大小  
        IMAGE_HEIGHT = 60  
        IMAGE_WIDTH = 160  
        MAX_CAPTCHA = len(text)  
        print("验证码文本最长字符数", MAX_CAPTCHA)
        # 文本转向量  
        #char_set = number + alphabet + ALPHABET + ['_']  # 如果验证码长度小于4, '_'用来补齐  
        char_set = number
        CHAR_SET_LEN = len(char_set)
        
        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])  
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])  
        keep_prob = tf.placeholder(tf.float32) # dropout 
        
        train_crack_captcha_cnn()
    if train == 1:
        number = ['0','1','2','3','4','5','6','7','8','9']  
        IMAGE_HEIGHT = 60  
        IMAGE_WIDTH = 160  
        char_set = number
        CHAR_SET_LEN = len(char_set)
        
        
     
        text, image = gen_captcha_text_and_image()  
        
        
        f = plt.figure()  
        ax = f.add_subplot(111)  
        ax.text(0.1, 0.9,text, ha='center', va='center', transform=ax.transAxes)  
        plt.imshow(image)  
       
        plt.show()  
        
        MAX_CAPTCHA = len(text)
        image = convert2gray(image)  
        image = image.flatten() / 255  
        
        X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WIDTH])  
        Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])  
        keep_prob = tf.placeholder(tf.float32) # dropout 
        
        predict_text = crack_captcha(image)  
        print("正确: {}  预测: {}".format(text, predict_text))