Spark-RDD
1.RDD概述
RDD是Spark的基石,是实现Spark数据处理的核心抽象。那么RDD为什么会产生呢?
Hadoop的MapReduce是一种基于数据集的工作模式,面向数据,这种工作模式一般是从存储上加载数据集,然后操作数据集,最后写入物理存储设备。数据更多面临的是一次性处理。
MR的这种方式对数据领域两种常见的操作不是很高效。第一种是迭代式的算法。比如机器学习中ALS、凸优化梯度下降等。这些都需要基于数据集或者数据集的衍生数据反复查询反复操作。MR这种模式不太合适,即使多MR串行处理,性能和时间也是一个问题。数据的共享依赖于磁盘。另外一种是交互式数据挖掘,MR显然不擅长。
2.什么是RDD
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。在 Spark 中,对数据的所有操作不外乎创建 RDD、转化已有RDD 以及调用 RDD 操作进行求值。每个 RDD 都被分为多个分区,这些分区运行在集群中的不同节点上。RDD 可以包含 Python、Java、Scala 中任意类型的对象, 甚至可以包含用户自定义的对象。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。
RDD支持两种操作:转化操作和行动操作。RDD 的转化操作是返回一个新的 RDD的操作,比如 map()和 filter(),而行动操作则是向驱动器程序返回结果或把结果写入外部系统的操作。比如 count() 和 first()。
Spark采用惰性计算模式(懒执行),RDD只有第一次在一个行动操作中用到时,才会真正计算。Spark可以优化整个计算过程。默认情况下,Spark 的 RDD 会在你每次对它们进行行动操作时重新计算。如果想在多个行动操作中重用同一个 RDD,可以使用 RDD.persist() 让 Spark 把这个 RDD 缓存下来。
Dataset:一个数据集合,用于存放数据的。
Distributed:RDD中的数据是分布式,课用于分布式计算。
Resilient:RDD中的数据可以存储在内存中或者磁盘中
3.RDD的属性
A.一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。
B.一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。
举例,val rdd2=rdd1.map(x=>(x,1))
在这里作用的每一个分区的函数:x=>(x,1)
C.RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
举例:val rdd2=rdd1.map(x=>(x,1))
此时rdd2的结果就依赖于rdd1
D.一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。
提问:MapRduce的shuffle过程做哪些事?
E.一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。
RDD是一个应用层面的逻辑概念。一个RDD多个分片。RDD就是一个元数据记录集,记录了RDD内存所有的关系数据。
4.RDD的特点
RDD表示只读的分区的数据集,对RDD进行改动,只能通过RDD的转换操作,由一个RDD得到一个新的RDD,新的RDD包含了从其他RDD衍生所必需的信息。RDDs之间存在依赖,RDD的执行是按照血缘关系延时计算的。如果血缘关系较长,可以通过持久化RDD来切断血缘关系。
4.1RDD的分区特点
RDD逻辑上是分区的,每个分区的数据是抽象存在的,计算的时候会通过一个compute函数得到每个分区的数据。如果RDD是通过已有的文件系统构建,则compute函数是读取指定文件系统中的数据,如果RDD是通过其他RDD转换而来,则compute函数是执行转换逻辑将其他RDD的数据进行转换。
4.2RDD的只读特点
RDD是只读的,要想改变RDD中的数据,只能在现有的RDD基础上创建新的RDD。
由一个RDD转换到另一个RDD,可以通过丰富的操作算子实现,不再像MapReduce那样只能写map和reduce了,如下图所示。
RDD的操作算子包括两类,一类叫做transformations,它是用来将RDD进行转化,构建RDD的血缘关系;另一类叫做actions,它是用来触发RDD的计算,得到RDD的相关计算结果或者将RDD保存的文件系统中。下图是RDD所支持的操作算子列表。
4.3RDD的依赖特点
RDDs通过操作算子进行转换,转换得到的新RDD包含了从其他RDDs衍生所必需的信息,RDDs之间维护着这种血缘关系,也称之为依赖。如下图所示,依赖包括两种,一种是窄依赖,RDDs之间分区是一一对应的,另一种是宽依赖,下游RDD的每个分区与上游RDD(也称之为父RDD)的每个分区都有关,是多对多的关系。
通过RDDs之间的这种依赖关系,一个任务流可以描述为DAG(有向无环图),如下图所示,在实际执行过程中宽依赖对应于Shuffle(图中的reduceByKey和join),窄依赖中的所有转换操作可以通过类似于管道的方式一气呵成执行(图中map和union可以一起执行)。
4.4RDD的缓存特点
如果在应用程序中多次使用同一个RDD,可以将该RDD缓存起来,该RDD只有在第一次计算的时候会根据血缘关系得到分区的数据,在后续其他地方用到该RDD的时候,会直接从缓存处取而不用再根据血缘关系计算,这样就加速后期的重用。如下图所示,RDD-1经过一系列的转换后得到RDD-n并保存到hdfs,RDD-1在这一过程中会有个中间结果,如果将其缓存到内存,那么在随后的RDD-1转换到RDD-m这一过程中,就不会计算其之前的RDD-0了。
4.5 RDD之CheckPoint
虽然RDD的血缘关系天然地可以实现容错,当RDD的某个分区数据失败或丢失,可以通过血缘关系重建。但是对于长时间迭代型应用来说,随着迭代的进行,RDDs之间的血缘关系会越来越长,一旦在后续迭代过程中出错,则需要通过非常长的血缘关系去重建,势必影响性能。为此,RDD支持checkpoint将数据保存到持久化的存储中,这样就可以切断之前的血缘关系,因为checkpoint后的RDD不需要知道它的父RDDs了,它可以从checkpoint处拿到数据。
给定一个RDD我们至少可以知道如下几点信息:1、分区数以及分区方式;2、由父RDDs衍生而来的相关依赖信息;3、计算每个分区的数据,计算步骤为:1)如果被缓存,则从缓存中取的分区的数据;2)如果被checkpoint,则从checkpoint处恢复数据;3)根据血缘关系计算分区的数据。
5.为什么会产生RDD?
(1)传统的MapReduce虽然具有自动容错、平衡负载和扩拓展性的优点,但是其最大的缺点是采用非循环式的流动模型,使得在迭代计算中要进行大量的磁盘IO操作。RDD正是解决这一缺点的抽象方法。
(2)RDD是Spark提供的最重要的抽象概念,它是一种具有容错机制的特殊集合,可以分布在集群的节点上,以函数式编程来操作集合,进行各种并行操作。可以把RDD的结果数据进行缓存,方便进行多次重用,避免重复计算。
6.RDD在Spark中的地位和作用
(1)因为传统的计算模型无法解决迭代计算和交互式计算。而Spark的使命就是解决这两个问题。这是他存在的价值和理由。
//迭代计算是数值计算中一类典型方法,应用于方程求根,方程组求解,矩阵求特征值等方面。在计算机科学中,迭代是程序中对一组指令(或一定步骤)的重复。它既可以被用作通用的术语(与“重复”同义),也可以用来描述一种特定形式的具有可变状态的重复。
//迭代计算的基本思想是逐次逼近,先取一个粗糙的近似值,然后用同一个递推公式,反复校正此初值,直至达到预定精度要求为止。迭代计算次数指允许公式反复计算的次数,在Excel中通常只针对循环引用生效.其他公式在循环引用状态下不产生变化。
(2)Spark如何解决迭代计算的呢?
其主要实现的思想就是RDD,把所有计算的数据保存在分布式的内存中。迭代计算通常都是对同一个数据集做反复的迭代计算,数据在内存中将大大提升IO操作。这也是Spark设计的核心:内存计算。
(3)Spark如何实现交互式计算?
因为Spark是用Scala语言实现的,Spark和Scala能够紧密的集成,所以SPark可以完美的运用解释器,是的其中的scala可以向本地集合对象一样,轻松操作分布式数据集。
数据在内存中将大大提升IO操作。这也是Spark设计的核心:内存计算。
(3)Spark如何实现交互式计算?
因为Spark是用Scala语言实现的,Spark和Scala能够紧密的集成,所以SPark可以完美的运用解释器,是的其中的scala可以向本地集合对象一样,轻松操作分布式数据集。