介绍一下redis数据库?

Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景

Redis 提供了多种数据类型来支持不同的业务场景,比如 String(字符串)、Hash(哈希)、 List (列表)、Set(集合)、Zset(有序集合)、Bitmaps(位图)、HyperLogLog(基数统计)、GEO(地理信息)、Stream(流),并且对数据类型的操作都是原子性的,因为执行命令由单线程负责的,不存在并发竞争的问题。

除此之外,Redis 还支持事务 、持久化、Lua 脚本、多种集群方案(主从复制模式、哨兵模式、切片机群模式)、发布/订阅模式,内存淘汰机制、过期删除机制等等。

redis为什么更快?

官方使用基准测试的结果是,单线程的 Redis 吞吐量可以达到 10W/每秒,如下图所示:

img

Redis面经_数据

之所以 Redis 采用单线程(网络 I/O 和执行命令)那么快,有如下几个原因:

介绍一下redis数据库?

Redis 是一种基于内存的数据库,对数据的读写操作都是在内存中完成,因此读写速度非常快,常用于缓存,消息队列、分布式锁等场景

Redis 提供了多种数据类型来支持不同的业务场景,比如 String(字符串)、Hash(哈希)、 List (列表)、Set(集合)、Zset(有序集合)、Bitmaps(位图)、HyperLogLog(基数统计)、GEO(地理信息)、Stream(流),并且对数据类型的操作都是原子性的,因为执行命令由单线程负责的,不存在并发竞争的问题。

除此之外,Redis 还支持事务 、持久化、Lua 脚本、多种集群方案(主从复制模式、哨兵模式、切片机群模式)、发布/订阅模式,内存淘汰机制、过期删除机制等等。

redis为什么更快?

官方使用基准测试的结果是,单线程的 Redis 吞吐量可以达到 10W/每秒,如下图所示:

img

之所以 Redis 采用单线程(网络 I/O 和执行命令)那么快,有如下几个原因:

  • Redis 的大部分操作

都在内存中完成,并且采用了高效的数据结构,因此 Redis 瓶颈可能是机器的内存或者网络带宽,而并非 CPU,既然 CPU 不是瓶颈,那么自然就采用单线程的解决方案了;

  • Redis 采用单线程模型可以

避免了多线程之间的竞争,省去了多线程切换带来的时间和性能上的开销,而且也不会导致死锁问题。

  • Redis 采用了

 I/O 多路复用机制处理大量的客户端 Socket 请求,IO 多路复用机制是指一个线程处理多个 IO 流,就是我们经常听到的 select/epoll 机制。简单来说,在 Redis 只运行单线程的情况下,该机制允许内核中,同时存在多个监听 Socket 和已连接 Socket。内核会一直监听这些 Socket 上的连接请求或数据请求。一旦有请求到达,就会交给 Redis 线程处理,这就实现了一个 Redis 线程处理多个 IO 流的效果。

redis 怎么实现持久化的?

Redis 的读写操作都是在内存中,所以 Redis 性能才会高,但是当 Redis 重启后,内存中的数据就会丢失,那为了保证内存中的数据不会丢失,Redis 实现了数据持久化的机制,这个机制会把数据存储到磁盘,这样在 Redis 重启就能够从磁盘中恢复原有的数据。

Redis 共有两种数据持久化的方式:

  • AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;
  • RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;

redis单线程在多核机器里使用会不会浪费机器资源?

虽然 Redis 的主要工作(网络 I/O 和执行命令)一直是单线程模型,但是在 Redis 6.0 版本之后,也采用了多个 I/O 线程来处理网络请求这是因为随着网络硬件的性能提升,Redis 的性能瓶颈有时会出现在网络 I/O 的处理上

所以为了提高网络 I/O 的并行度,Redis 6.0 对于网络 I/O 采用多线程来处理。但是对于命令的执行,Redis 仍然使用单线程来处理。

Redis 官方表示,Redis 6.0 版本引入的多线程 I/O 特性对性能提升至少是一倍以上

redis 执行命令还是单线程,那如何利用多核心来提升性能?

可以在系统部署多个 redis docker 容器来处理,达到充分利用 cpu 多核心的效果

redis缓存穿透、缓存击穿、缓存雪崩是什么?怎么解决?

缓存雪崩

大量缓存数据在同一时间过期或者 Redis 故障宕机时,如果此时有大量的用户请求,都无法在 Redis 中处理,于是全部请求都直接访问数据库,从而导致数据库的压力增加,严重的会造成数据库宕机,从而形成一系列连锁反应,造成整个系统崩溃。

解决方法

  • 大量数据同时过期
  • 均匀设置过期时间:避免将大量的数据设置成同一个过期时间。
  • 互斥锁:当业务线程在处理用户请求时,如果发现访问的数据不在 Redis 里,就加个互斥锁,保证同一时间内只有一个请求来构建缓存。未能获取互斥锁的请求等待锁释放后重新读取缓存,或者返回空值或者默认值。
  • 双key策略:使用两个key,一个是主key,设置过期时间,一个是备key,不会设置过期,key不一样,但是value值是一样。当业务线程访问不到主key的缓存数据时,就直接返回备key的缓存数据,然后在更新缓存的时候,同时更新主key和备key的数据。
  • 后台更新缓存:业务线程不再负责更新缓存,缓存也不设置有效期,而是让缓存“永久有效”,并将更新缓存的工作交由后台线程定时更新。
  • Redis故障宕机
  • 服务熔断或请求限流机制:启动

服务熔断机制,暂停业务应用对缓存服务的访问,直接返回错误,所以不用再继续访问数据库,保证数据库系统的正常运行,等到 Redis 恢复正常后,再允许业务应用访问缓存服务。服务熔断机制是保护数据库的正常允许,但是暂停了业务应用访问缓存服系统,全部业务都无法正常工作。也可以启用请求限流机制,只将少部分请求发送到数据库进行处理,再多的请求就在入口直接拒绝服务

  • 构建高可靠集群:通过

主从节点的方式构建 Redis 缓存高可靠集群。如果 Redis 缓存的主节点故障宕机,从节点可以切换成为主节点,继续提供缓存服务,避免了由于 Redis 故障宕机而导致的缓存雪崩问题。

缓存击穿

如果缓存中的某个热点数据过期了,此时大量的请求访问了该热点数据,就无法从缓存中读取,直接访问数据库,数据库很容易就被高并发的请求冲垮。

解决方案

  • 互斥锁方案

:保证同一时间只有一个业务线程更新缓存,未能获取互斥锁的请求,要么等待锁释放后重新读取缓存,要么就返回空值或者默认值。

  • 不给热点数据设置过期时间

:由后台异步更新缓存,或者在热点数据准备要过期前,提前通知后台线程更新缓存以及重新设置过期时间。

缓存穿透

当用户访问的数据,既不在缓存中,也不在数据库中,导致请求在访问缓存时,发现缓存缺失,再去访问数据库时,发现数据库中也没有要访问的数据,没办法构建缓存数据,来服务后续的请求。那么当有大量这样的请求到来时,数据库的压力骤增,这就是缓存穿透的问题。

解决方案

  • 非法请求的限制

:当有大量恶意请求访问不存在的数据的时候会发生缓存穿透,可以在 API 入口处判断求请求参数是否合理,请求参数是否含有非法值、请求字段是否存在,如果判断出是恶意请求就直接返回错误,避免进一步访问缓存和数据库。

  • 缓存空值或者默认值

:当线上业务发现缓存穿透的现象时,可以针对查询的数据,在缓存中设置一个空值或者默认值,这样后续请求就可以从缓存中读取到空值或者默认值,返回给应用,而不会继续查询数据库。

  • 使用布隆过滤器快速判断数据是否存在,避免通过查询数据库来判断数据是否存在

:可以在写入数据库数据时,使用布隆过滤器做个标记,然后在用户请求到来时,业务线程确认缓存失效后,可以通过查询布隆过滤器快速判断数据是否存在,如果不存在,就不用通过查询数据库来判断数据是否存在。

怎么用redis分布式锁?

基于 Redis 节点实现分布式锁时,对于加锁操作,我们需要满足三个条件。

  • 加锁包括了读取锁变量、检查锁变量值和设置锁变量值三个操作,但需要以原子操作的方式完成,所以,我们使用 SET 命令带上 NX 选项来实现加锁;
  • 锁变量需要设置过期时间,以免客户端拿到锁后发生异常,导致锁一直无法释放,所以,我们在 SET 命令执行时加上 EX/PX 选项,设置其过期时间;
  • 锁变量的值需要能区分来自不同客户端的加锁操作,以免在释放锁时,出现误释放操作,所以,我们使用 SET 命令设置锁变量值时,每个客户端设置的值是一个唯一值,用于标识客户端;

满足这三个条件的分布式命令如下:

SET lock_key unique_value NX PX 10000

  • lock_key 就是 key 键;
  • unique_value 是客户端生成的唯一的标识,区分来自不同客户端的锁操作;
  • NX 代表只在 lock_key 不存在时,才对 lock_key 进行设置操作;
  • PX 10000 表示设置 lock_key 的过期时间为 10s,这是为了避免客户端发生异常而无法释放锁。

而解锁的过程就是将 lock_key 键删除(del lock_key),但不能乱删,要保证执行操作的客户端就是加锁的客户端。所以,解锁的时候,我们要先判断锁的 unique_value 是否为加锁客户端,是的话,才将 lock_key 键删除。

可以看到,解锁是有两个操作,这时就需要 Lua 脚本来保证解锁的原子性,因为 Redis 在执行 Lua 脚本时,可以以原子性的方式执行,保证了锁释放操作的原子性。

// 释放锁时,先比较 unique_value 是否相等,避免锁的误释放 if redis.call("get",KEYS[1]) == ARGV[1] then return redis.call("del",KEYS[1]) else return 0 end

这样一来,就通过使用 SET 命令和 Lua 脚本在 Redis 单节点上完成了分布式锁的加锁和解锁。