本期目录
- 加载预训练模型(有重大更新)
- 1. 新老版本写法对比
- 2. 新写法的好处
加载预训练模型(有重大更新)
相信最近 (2022年7月) 安装或者更新了 PyTorch 和 torchvision 的同志们可能跑代码时遇到了下面的报错之一:
- UserWarning: The parameter ‘pretrained’ is deprecated since 0.13 and will be removed in 0.15, please use ‘weights’ instead.
- UserWarning: Arguments other than a weight enum or
None
for ‘weights’ are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passingweights=ResNet50_Weights.IMAGENET1K_V1
. You can also useweights=ResNet50_Weights.DEFAULT
to get the most up-to-date weights. - Expected type ‘Optional[ResNet50_Weights]’, got ‘str’ instead
这是因为 torchvision 0.13对预训练模型加载方式作出了重大更新造成的。今天一次性就可以把上面3条Bug全部消灭。
从 torchvision 0.13开始,torchvision提供一个全新的多权重支持API (Multi-weight support API) ,支持将不同版本的权重参数文件加载到模型中。
1. 新老版本写法对比
从 torchvision 0.13开始,加载预训练模型函数的参数从
pretrained = True
改为weights=预训练模型参数版本
。且旧版本的写法将在未来的torchvision 0.15版本中被Deprecated 。
举个例子:
from torchvision import models
# 旧版本的写法,将在未来的torchvision 0.15版本中被Deprecated
model_old = models.resnet50(pretrained=True) # deprecated
model_old = models.resnet50(True) # deprecated
# torchvision 0.13及以后的新版本写法
model_new = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
# 没有预训练模型加载
model = models.resnet50(weights=None)
model = models.resnet50()
其中,第8行代码的 IMAGENET1K_V1
表示的是 ResNet-50 在 ImageNet 数据集上进行预训练的第一个版本的权重参数文件。是一个版本标识符。
2. 新写法的好处
在旧版本的写法 pretrained = True
中,对于预训练权重参数我们没有太多选择的余地,一执行起来就要使用默认的预训练权重文件版本。但问题是,现在深度学习的发展日新月异,很快就有性能更强的模型横空出世。
而使用新版本写法 weights=预训练模型参数版本
,相当于我们掌握了预训练权重参数文件的选择权。我们就可以尽情地使用更准更快更强更新的预训练权重参数文件,帮助我们的研究更上一层楼。
举个例子:
from torchvision import models
# 加载精度为76.130%的旧权重参数文件V1
model_v1 = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)
# 等价写法
model_v1 = models.resnet50(weights="IMAGENET1K_V1")
# 加载精度为80.858%的新权重参数文件V2
model_v2 = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V2)
# 等价写法
model_v1 = models.resnet50(weights="IMAGENET1K_V2")
如果你不知道哪个权重文件的版本是最新的,没关系,直接选择默认DEFAULT即可。官方会随着 torchvision 的升级而让 DEFAULT 权重文件版本保持在最新。如下代码所示:
from torchvision import models
# 如果你不知道哪个版本是最新, 直接选择默认DEFAULT即可
model_new = models.resnet50(weights=models.ResNet50_Weights.DEFAULT)