目录

1.写在前面

2.实现机制

3.开源CDC方案对比


1.写在前面

        CDC 的全称是 Change Data Capture((变更数据获取),在广义的概念上,只要是能捕获数据变更的技术,我们都可以称之为 CDC 。目前通常描述的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。

        核心思想是,监测并捕获数据库的 变动(包括数据或数据表的插入、更新以及删除等),将这些变更按发生的顺序完整记录下 来,写入到消息中间件中以供其他服务进行订阅及消费。

        CDC 技术的应用场景非常广泛:

  • 数据同步:用于备份,容灾;
  • 数据分发:一个数据源分发给多个下游系统;
  • 数据采集:面向数据仓库 / 数据湖的 ETL 数据集成,是非常重要的数据源。

2.实现机制

        CDC 的技术方案非常多,目前业界主流的实现机制可以分为两种,基于查询的CDC和基于日志的CDC。

flink 写hudi同步hive pom flink cdc 同步数据_数据

  • 基于查询的 CDC:
  • 离线调度查询作业,批处理。把一张表同步到其他系统,每次通过查询去获取表中最新的数据;
  • 无法保障数据一致性,查的过程中有可能数据已经发生了多次变更;
  • 不保障实时性,基于离线调度存在天然的延迟。
  • 基于日志的 CDC:
  • 实时消费日志,流处理,例如 MySQL 的 binlog 日志完整记录了数据库中的变更,可以把 binlog 文件当作流的数据源;
  • 保障数据一致性,因为 binlog 文件包含了所有历史变更明细;
  • 保障实时性,因为类似 binlog 的日志文件是可以流式消费的,提供的是实时数据。

3.开源CDC方案对比

flink 写hudi同步hive pom flink cdc 同步数据_etl_02

  • 对比增量同步能力,
  • 基于日志的方式,可以很好的做到增量同步;
  • 而基于查询的方式是很难做到增量同步的。
  • 对比全量同步能力,基于查询或者日志的 CDC 方案基本都支持,除了 Canal。
  • 而对比全量 + 增量同步的能力,只有 Flink CDC、Debezium、Oracle Goldengate 支持较好。
  • 从架构角度去看,该表将架构分为单机和分布式,这里的分布式架构不单纯体现在数据读取能力的水平扩展上,更重要的是在大数据场景下分布式系统接入能力。例如 Flink CDC 的数据入湖或者入仓的时候,下游通常是分布式的系统,如 Hive、HDFS、Iceberg、Hudi 等,那么从对接入分布式系统能力上看,Flink CDC 的架构能够很好地接入此类系统。
  • 在数据转换 / 数据清洗能力上,当数据进入到 CDC 工具的时候是否能较方便的对数据做一些过滤或者清洗,甚至聚合?
  • 在 Flink CDC 上操作相当简单,可以通过 Flink SQL 去操作这些数据;
  • 但是像 DataX、Debezium 等则需要通过脚本或者模板去做,所以用户的使用门槛会比较高。
  • 另外,在生态方面,这里指的是下游的一些数据库或者数据源的支持。Flink CDC 下游有丰富的 Connector,例如写入到 TiDB、MySQL、Pg、HBase、Kafka、ClickHouse 等常见的一些系统,也支持各种自定义 connector。