梯度下降算法是做计算机视觉绕不开的基础算法,有空看一看、学一学。网上有大神出没,借鉴一下大佬的理解文章,不要怪罪哈。

梯度法思想的三要素:出发点、下降方向、下降步长。

梯度下降的场景假设

梯度下降法的基本思想可以类比为一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。

java 基于梯度下降的算法_java 基于梯度下降的算法

我们同时可以假设这座山最陡峭的地方是无法通过肉眼立马观察出来的,而是需要一个复杂的工具来测量,同时,这个人此时正好拥有测量出最陡峭方向的能力。所以,此人每走一段距离,都需要一段时间来测量所在位置最陡峭的方向,这是比较耗时的。那么为了在太阳下山之前到达山底,就要尽可能的减少测量方向的次数。这是一个两难的选择,如果测量的频繁,可以保证下山的方向是绝对正确的,但又非常耗时,如果测量的过少,又有偏离轨道的风险。所以需要找到一个合适的测量方向的频率,来确保下山的方向不错误,同时又不至于耗时太多!

梯度下降的基本过程就和下山的场景很类似

梯度

梯度实际上就是多变量微分的一般化,高数中有学习过这个概念

下面这个例子:

java 基于梯度下降的算法_梯度下降算法_02

我们可以看到,梯度就是分别对每个变量进行微分,然后用逗号分割开,梯度是用<>包括起来,说明梯度其实一个向量。
梯度是微积分中一个很重要的概念,之前提到过梯度的意义

在单变量的函数中,梯度其实就是函数的微分,代表着函数在某个给定点的切线的斜率
在多变量函数中,梯度是一个向量,向量有方向,梯度的方向就指出了函数在给定点的上升最快的方向

这也就说明了为什么我们需要千方百计的求取梯度!我们需要到达山底,就需要在每一步观测到此时最陡峭的地方,梯度就恰巧告诉了我们这个方向。梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的方向一直走,就能走到局部的最低点!

java 基于梯度下降的算法_梯度下降算法_03

梯度下降算法的数学解释

上面我们花了大量的篇幅介绍梯度下降算法的基本思想和场景假设,以及梯度的概念和思想。下面我们就开始从数学上解释梯度下降算法的计算过程和思想!

java 基于梯度下降的算法_梯度下降算法_04


此公式的意义是:J是关于Θ的一个函数,我们当前所处的位置为Θ0点,要从这个点走到J的最小值点,也就是山底。首先我们先确定前进的方向,也就是梯度的反向,然后走一段距离的步长,也就是α,走完这个段步长,就到达了Θ1这个点!

java 基于梯度下降的算法_梯度下降算法_05


下面就这个公式的几个常见的疑问:

α是什么含义?
α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离,以保证不要步子跨的太大扯着蛋,哈哈,其实就是不要走太快,错过了最低点。同时也要保证不要走的太慢,导致太阳下山了,还没有走到山下。所以α的选择在梯度下降法中往往是很重要的!α不能太大也不能太小,太小的话,可能导致迟迟走不到最低点,太大的话,会导致错过最低点!

java 基于梯度下降的算法_梯度下降_06


为什么要梯度要乘以一个负号?

梯度前加一个负号,就意味着朝着梯度相反的方向前进!我们在前文提到,梯度的方向实际就是函数在此点上升最快的方向!而我们需要朝着下降最快的方向走,自然就是负的梯度的方向,所以此处需要加上负号。

举个栗子

单变量函数的梯度下降

我们假设有一个单变量的函数

java 基于梯度下降的算法_梯度下降法_07

函数的微分

java 基于梯度下降的算法_梯度下降_08


初始化,起点为

java 基于梯度下降的算法_梯度下降_09


学习率为

java 基于梯度下降的算法_java 基于梯度下降的算法_10


根据梯度下降的计算公式

java 基于梯度下降的算法_梯度下降算法_11

我们开始进行梯度下降的迭代计算过程:

java 基于梯度下降的算法_梯度下降算法_12


如图,经过四次的运算,也就是走了四步,基本就抵达了函数的最低点,也就是山底

java 基于梯度下降的算法_梯度下降_13

多变量函数的梯度下降

我们假设有一个目标函数

java 基于梯度下降的算法_梯度下降算法_14


现在要通过梯度下降法计算这个函数的最小值。我们通过观察就能发现最小值其实就是 (0,0)点。但是接下来,我们会从梯度下降算法开始一步步计算到这个最小值!我们假设初始的起点为:

java 基于梯度下降的算法_梯度下降法_15


初始的学习率为:

java 基于梯度下降的算法_梯度下降法_16


函数的梯度为:

java 基于梯度下降的算法_java 基于梯度下降的算法_17


进行多次迭代:

java 基于梯度下降的算法_梯度下降算法_18

我们发现,已经基本靠近函数的最小值点

java 基于梯度下降的算法_梯度下降算法_19

梯度下降算法的实现

下面我们将用python实现一个简单的梯度下降算法。场景是一个简单的线性回归的例子:假设现在我们有一系列的点,如下图所示

java 基于梯度下降的算法_梯度下降法_20


我们将用梯度下降法来拟合出这条直线!

首先,我们需要定义一个代价函数,在此我们选用均方误差代价函数

java 基于梯度下降的算法_java 基于梯度下降的算法_21


此公示中

m是数据集中点的个数

½是一个常量,这样是为了在求梯度的时候,二次方乘下来就和这里的½抵消了,自然就没有多余的常数系数,方便后续的计算,同时对结果不会有影响

y 是数据集中每个点的真实y坐标的值

h 是我们的预测函数,根据每一个输入x,根据Θ 计算得到预测的y值,即

java 基于梯度下降的算法_梯度下降法_22


我们可以根据代价函数看到,代价函数中的变量有两个,所以是一个多变量的梯度下降问题,求解出代价函数的梯度,也就是分别对两个变量进行微分

java 基于梯度下降的算法_java 基于梯度下降的算法_23

明确了代价函数和梯度,以及预测的函数形式。我们就可以开始编写代码了。但在这之前,需要说明一点,就是为了方便代码的编写,我们会将所有的公式都转换为矩阵的形式,python中计算矩阵是非常方便的,同时代码也会变得非常的简洁。

为了转换为矩阵的计算,我们观察到预测函数的形式

java 基于梯度下降的算法_java 基于梯度下降的算法_24

我们有两个变量,为了对这个公式进行矩阵化,我们可以给每一个点x增加一维,这一维的值固定为1,这一维将会乘到Θ0上。这样就方便我们统一矩阵化的计算

java 基于梯度下降的算法_梯度下降法_25

然后我们将代价函数和梯度转化为矩阵向量相乘的形式

java 基于梯度下降的算法_梯度下降_26

import numpy as np

# Size of the points dataset.
m = 20

# Points x-coordinate and dummy value (x0, x1).
X0 = np.ones((m, 1))
X1 = np.arange(1, m+1).reshape(m, 1)
X = np.hstack((X0, X1))

# Points y-coordinate
y = np.array([
    3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12,
    11, 13, 13, 16, 17, 18, 17, 19, 21
]).reshape(m, 1)

# The Learning Rate alpha.
alpha = 0.01

def error_function(theta, X, y):
    '''Error function J definition.'''
    diff = np.dot(X, theta) - y
    return (1./2*m) * np.dot(np.transpose(diff), diff)

def gradient_function(theta, X, y):
    '''Gradient of the function J definition.'''
    diff = np.dot(X, theta) - y
    return (1./m) * np.dot(np.transpose(X), diff)

def gradient_descent(X, y, alpha):
    '''Perform gradient descent.'''
    theta = np.array([1, 1]).reshape(2, 1)
    gradient = gradient_function(theta, X, y)
    while not np.all(np.absolute(gradient) <= 1e-5):
        theta = theta - alpha * gradient
        gradient = gradient_function(theta, X, y)
    return theta

optimal = gradient_descent(X, y, alpha)
print('optimal:', optimal)
print('error function:', error_function(optimal, X, y)[0,0])

运行代码,计算得到的结果如下

java 基于梯度下降的算法_梯度下降算法_27


所拟合出的直线如下

java 基于梯度下降的算法_梯度下降法_28

小结

这个下山的人实际上就代表了反向传播算法,下山的路径其实就代表着算法中一直在寻找的参数Θ,山上当前点的最陡峭的方向实际上就是代价函数在这一点的梯度方向,场景中观测最陡峭方向所用的工具就是微分 。在下一次观测之前的时间就是有我们算法中的学习率α所定义的。

全量梯度下降法(Batch gradient descent)

全量梯度下降法每次学习都使用整个训练集,因此每次更新都会朝着正确的方向进行,最后能够保证收敛于极值点,凸函数收敛于全局极值点,非凸函数可能会收敛于局部极值点,缺陷就是学习时间太长,消耗大量内存。

随机梯度下降法(Stochastic Gradient Descent)

SGD一轮迭代只用一条随机选取的数据,尽管SGD的迭代次数比BGD大很多,但一次学习时间非常快。

SGD的缺点在于每次更新可能并不会按照正确的方向进行,参数更新具有高方差,从而导致损失函数剧烈波动。不过,如果目标函数有盆地区域,SGD会使优化的方向从当前的局部极小值点跳到另一个更好的局部极小值点,这样对于非凸函数,可能最终收敛于一个较好的局部极值点,甚至全局极值点。

缺点是,出现损失函数波动,如下图所示,并且无法判断是否收敛。

第三、小批量梯度下降法(Mini-Batch Gradient Descent)

SGD相比BGD收敛速度快,然而,它也的缺点,那就是收敛时浮动,不稳定,在最优解附近波动,难以判断是否已经收敛。这时折中的算法小批量梯度下降法,MBGD就产生了,道理很简单,SGD太极端,一次一条,为何不多几条?MBGD就是用一次迭代多条数据的方法。

并且如果Batch Size选择合理,不仅收敛速度比SGD更快、更稳定,而且在最优解附近的跳动也不会很大,甚至得到比Batch Gradient Descent 更好的解。这样就综合了SGD和Batch Gradient Descent 的优点,同时弱化了缺点。总之,Mini-Batch比SGD和Batch Gradient Descent都好。

第四、Momentum梯度下降法

SGD、BSGD两种改进方法都存在不同程度的震荡,如何避免震荡?或者说震荡是怎么产生的?震荡,从可视图表现来看,就是频繁更改方向,所以,如果能够把之前下降的方向考量进来,那么将会减少振荡。

下面推导动量下降法。

在普通的梯度下降法W -= V中,每次W的更新量V为V = dW * λ;

当使用冲量时,V考虑为本次的梯度下降量与部分上次更新量的矢量和,即-dW*λ与上次x的更新量V乘以一个介于[0, 1]的系数momemtum的和,即:

V = dW * λ+ V*momemtum。

当本次梯度下降方向与上次更新量的方向相同时,上次的更新量能够对本次的搜索起到一个正向加速的作用。当本次梯度下降方向与上次更新量的方向相反时,上次的更新量能够对本次的搜索起到一个减速的作用。

第五、NAG梯度下降法

NAG(Nesterov Accelerated Gradient)不仅仅把SGD梯度下降以前的方向考虑,还将Momentum梯度变化的幅度也考虑了进来。