前言:这里的前提是使用labelimg进行标注,标注生成文件类型是voc类型的xml。首先需要对采集的图片进行标准处理,这个在之前的文章中有做介绍,可以直接导航过去labelImg标准图集技巧
一、图片和生成的XML文件对应
在进行标注的时候可能会有漏标的情况出现,这时候就会导致图片名和生成的XML文件名不一一对应,因此需要对图集及生成的XML文件进行处理。
解决方案:
因为xml文件名是根据被标注的图片名生成的,因此只需要对应两个文件夹下的文件名就可以,对于只存在于一个文件夹下的文件名,删掉就可以。
# -*- coding: utf-8 -*-
import os
import sys
from PIL import Image
picture_folder = r'F:\test\dataSets\220308\images' # 源文件夹,包含.png格式图片
xml_folder = r'F:\test\dataSets\220308\xmls' # 输出文件夹
# training_data=[]
# 防止图片是png格式 上述代码可删除使用
path1 = picture_folder
def file_name(picture_dir,xml_dir):
jpg_list = []
xml_list = []
for root, dirs, files in os.walk(picture_dir):
for file in files:
if os.path.splitext(file)[1] == '.png' or os.path.splitext(file)[1] == '.jpg':
jpg_list.append(os.path.splitext(file)[0])
for root, dirs, files in os.walk(xml_dir):
for file in files:
if os.path.splitext(file)[1] == '.xml':
xml_list.append(os.path.splitext(file)[0])
xml_diff = set(xml_list).difference(set(jpg_list))
print(len(xml_diff))
for name in xml_diff:
print("no jpg", name + ".xml")
os.remove(xml_dir + "/" + name + ".xml")
jpg_diff = set(jpg_list).difference(set(xml_list))
print(len(jpg_diff))
for name in jpg_diff:
print("no json", name + ".jpg")
os.remove(picture_dir + "/" + name + ".jpg")
return jpg_list, xml_list
file_name(picture_folder,xml_folder)
二、数据文件划分
创建几个文件夹用于存放分割文件,images用于存放采集的图集,Annotations用于存放通过labelimg标注生成的xml文件,现在再创建两个文件夹:ImageSets(数据文件划分使用)、labels(目录三、数据集格式转换成yolo_txt格式使用)
├── data
│ ├── Annotations 进行 detection 任务时的标签文件,xml 形式,文件名与图片名一一对应
│ ├── images 存放 .jpg 格式的图片文件
│ ├── ImageSets 存放的是分类和检测的数据集分割文件,包含train.txt, val.txt,trainval.txt,test.txt
│ ├── labels 存放label标注信息的txt文件,与图片一一对应
# coding:utf-8
import os
import random
import argparse
parser = argparse.ArgumentParser()
#xml文件的地址,根据自己的数据进行修改 xml一般存放在Annotations下
parser.add_argument('--xml_path', default='Annotations', type=str, help='input xml label path')
#数据集的划分,地址选择自己数据下的ImageSets/Main
parser.add_argument('--txt_path', default='ImageSets/Main', type=str, help='output txt label path')
opt = parser.parse_args()
trainval_percent = 1.0
train_percent = 0.9
xmlfilepath = opt.xml_path
txtsavepath = opt.txt_path
total_xml = os.listdir(xmlfilepath)
if not os.path.exists(txtsavepath):
os.makedirs(txtsavepath)
num = len(total_xml)
list_index = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list_index, tv)
train = random.sample(trainval, tr)
file_trainval = open(txtsavepath + '/trainval.txt', 'w')
file_test = open(txtsavepath + '/test.txt', 'w')
file_train = open(txtsavepath + '/train.txt', 'w')
file_val = open(txtsavepath + '/val.txt', 'w')
for i in list_index:
name = total_xml[i][:-4] + '\n'
if i in trainval:
file_trainval.write(name)
if i in train:
file_train.write(name)
else:
file_val.write(name)
else:
file_test.write(name)
file_trainval.close()
file_train.close()
file_val.close()
file_test.close()
三、数据集格式转换成yolo_txt格式
此时将labelimg生成的xml文件(Annotations文件夹中)转换成yolo使用的格式,.txt文件(输出在labels文件夹中)
# -*- coding: utf-8 -*-
import xml.etree.ElementTree as ET
import os
from os import getcwd
sets = ['train', 'val', 'test']
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat",
"chair", "cow", "diningtable", "dog", "horse", "motorbike", "person",
"pottedplant", "sheep", "sofa", "train", "tvmonitor"] # 改成自己的类别voc2012
def convert(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0 - 1
y = (box[2] + box[3]) / 2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotation(image_id):
in_file = open('/home/ubuntu/yolov5/trainData/Annotations/%s.xml' % (image_id))
out_file = open('/home/ubuntu/yolov5/trainData/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult =None
if obj.find('Difficult') is None:
difficult = obj.find('difficult').text
else:
difficult = obj.find('Difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
b1, b2, b3, b4 = b
# 标注越界修正
if b2 > w:
b2 = w
if b4 > h:
b4 = h
b = (b1, b2, b3, b4)
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for image_set in sets:
if not os.path.exists('/home/ubuntu/yolov5/trainData/labels/'):
os.makedirs('/home/ubuntu/yolov5/trainData/labels/')
image_ids = open('/home/ubuntu/yolov5/trainData/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()
list_file = open('/home/ubuntu/yolov5/trainData/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('/home/ubuntu/yolov5/trainData/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()