有一些从pandas数据框中选择行的基本方法。布尔索引
位置索引
标签索引
API
对于每种基本类型,我们可以通过将自己限制在pandas API中来保持简单,或者我们可以在API之外冒险,通常进入numpy并加速。
我将向您展示每个示例,并指导您何时使用某些技术。
设置
我们首先需要确定一个条件,作为选择行的标准。OP提供column_name == some_value。我们将从那里开始并包含一些其他常见用例。
借用@unutbu:import pandas as pd, numpy as np
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2})
假设我们的标准是column 'A'='foo'
1.
布尔索引要求查找每行的'A'列的真值等于'foo',然后使用这些真值来标识要保留的行。通常,我们将此系列命名为一系列真值,mask。我们也会在这里这样做。mask = df['A'] == 'foo'
然后我们可以使用此掩码对数据帧进行切片或索引
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
这是完成此任务的最简单方法之一,如果性能或直观性不是问题,那么这应该是您选择的方法。但是,如果性能是一个问题,那么您可能想要考虑另一种创建方法mask。
2.
位置索引有其用例,但这不是其中之一。为了确定切片的位置,我们首先需要执行上面我们所做的相同的布尔分析。这使我们执行一个额外的步骤来完成相同的任务。
mask = df['A'] == 'foo'
pos = np.flatnonzero(mask)
df.iloc[pos]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
3.
标签索引可以非常方便,但在这种情况下,我们再次做更多的工作,没有任何好处
df.set_index('A', append=True, drop=False).xs('foo', level=1)
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
4.
pd.DataFrame.query是一种非常优雅/直观的方式来执行此任务。但往往比较慢。 但是,如果您注意以下时间,对于大数据,查询非常有效。比标准方法更重要,与我最好的建议相似。
df.query('A == "foo"')
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
我的偏好是使用 Boolean mask
可以通过修改我们创建的方式来实现实际改进Boolean mask。
maskalternative 1
使用底层numpy数组并放弃创建另一个数组的开销pd.Series
mask = df['A'].values == 'foo'
我将在最后展示更完整的时间测试,但只是看看我们使用示例数据帧获得的性能提升。首先,我们看一下创建的区别mask
%timeit mask = df['A'].values == 'foo'
%timeit mask = df['A'] == 'foo'
5.84 µs ± 195 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
166 µs ± 4.45 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
mask使用numpy数组进行评估的速度要快30倍。这部分是由于numpy评估通常更快。部分原因还在于缺乏构建索引和相应pd.Series对象所需的开销。
接下来,我们将看一个切片与另一个切片的时间mask。
mask = df['A'].values == 'foo'
%timeit df[mask]
mask = df['A'] == 'foo'
%timeit df[mask]
219 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
239 µs ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
性能提升并不明显。我们将看看这是否适用于更强大的测试。
mask替代方案2
我们也可以重建数据框架。在重建数据帧时有一个很大的警告 - 你必须dtypes在这样做的时候注意!
而不是df[mask]我们会这样做
pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
如果数据帧是混合类型(我们的示例是),那么当我们得到df.values结果数组dtype object时,新数据帧的所有列都将是dtype object。因此需要astype(df.dtypes)并杀死任何潜在的性能提升。
%timeit df[m]
%timeit pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
216 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.43 ms ± 39.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
但是,如果数据框不是混合类型,则这是一种非常有用的方法。
特定
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
d1
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
%%timeit
mask = d1['A'].values == 7
d1[mask]
179 µs ± 8.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
与
%%timeit
mask = d1['A'].values == 7
pd.DataFrame(d1.values[mask], d1.index[mask], d1.columns)
87 µs ± 5.12 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
我们把时间缩短了一半。
mask替代3
@unutbu还向我们展示了如何使用pd.Series.isin来计算df['A']一组值中的每个元素。如果我们的值集是一个值的集合,即对此进行评估'foo'。但如果需要,它还可以推广包括更大的值集。事实证明,尽管这是一个更通用的解决方案,但仍然相当快。对于那些不熟悉这个概念的人来说,唯一真正的损失是直观的。
mask = df['A'].isin(['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
然而,和以前一样,我们可以利用numpy提高性能,同时几乎不牺牲任何东西。我们会用的np.in1d
mask = np.in1d(df['A'].values, ['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
时间
我将包括其他帖子中提到的其他概念以供参考。
代码如下
此表中的每个列表示一个不同长度的数据框,我们在其上测试每个函数。每列显示相对时间,最快的函数给定基本索引1.0。
res.div(res.min())
10 30 100 300 1000 3000 10000 30000
mask_standard 2.156872 1.850663 2.034149 2.166312 2.164541 3.090372 2.981326 3.131151
mask_standard_loc 1.879035 1.782366 1.988823 2.338112 2.361391 3.036131 2.998112 2.990103
mask_with_values 1.010166 1.000000 1.005113 1.026363 1.028698 1.293741 1.007824 1.016919
mask_with_values_loc 1.196843 1.300228 1.000000 1.000000 1.038989 1.219233 1.037020 1.000000
query 4.997304 4.765554 5.934096 4.500559 2.997924 2.397013 1.680447 1.398190
xs_label 4.124597 4.272363 5.596152 4.295331 4.676591 5.710680 6.032809 8.950255
mask_with_isin 1.674055 1.679935 1.847972 1.724183 1.345111 1.405231 1.253554 1.264760
mask_with_in1d 1.000000 1.083807 1.220493 1.101929 1.000000 1.000000 1.000000 1.144175
你会注意到最快的时间似乎在mask_with_values和之间共享mask_with_in1d
res.T.plot(loglog=True)
功能
def mask_standard(df):
mask = df['A'] == 'foo'
return df[mask]
def mask_standard_loc(df):
mask = df['A'] == 'foo'
return df.loc[mask]
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_values_loc(df):
mask = df['A'].values == 'foo'
return df.loc[mask]
def query(df):
return df.query('A == "foo"')
def xs_label(df):
return df.set_index('A', append=True, drop=False).xs('foo', level=-1)
def mask_with_isin(df):
mask = df['A'].isin(['foo'])
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
测试
res = pd.DataFrame(
index=[
'mask_standard', 'mask_standard_loc', 'mask_with_values', 'mask_with_values_loc',
'query', 'xs_label', 'mask_with_isin', 'mask_with_in1d'
],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
for j in res.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in res.index:a
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
res.at[i, j] = timeit(stmt, setp, number=50)
特殊时序
查看当我们dtype为整个数据帧设置单个非对象时的特殊情况。 代码如下
spec.div(spec.min())
10 30 100 300 1000 3000 10000 30000
mask_with_values 1.009030 1.000000 1.194276 1.000000 1.236892 1.095343 1.000000 1.000000
mask_with_in1d 1.104638 1.094524 1.156930 1.072094 1.000000 1.000000 1.040043 1.027100
reconstruct 1.000000 1.142838 1.000000 1.355440 1.650270 2.222181 2.294913 3.406735
事实证明,重建不值得过去几百行。
spec.T.plot(loglog=True)
功能np.random.seed([3,1415])d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]def reconstruct(df):
v = df.values
mask = np.in1d(df['A'].values, ['foo'])
return pd.DataFrame(v[mask], df.index[mask], df.columns)spec = pd.DataFrame(
index=['mask_with_values', 'mask_with_in1d', 'reconstruct'],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float)
测试for j in spec.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in spec.index:
stmt = '{}(d)'.format(i)
setp = 'from __main__ import d, {}'.format(i)
spec.at[i, j] = timeit(stmt, setp, number=50)