Hadoop生态大数据系统分为Yam、 HDFS、MapReduce计算框架。TensorFlow分布式相当于MapReduce计算框架,Kubernetes相当于Yam调度系统。TensorFlowOnSpark,利用远程直接内存访问(Remote Direct Memory Access,RDMA)解决存储功能和调度,实现深度学习和大数据融合。TensorFlowOnSpark(TFoS),雅虎开源项目。https://github.com/yahoo/TensorFlowOnSpark 。支持ApacheSpark集群分布式TensorFlow训练、预测。TensorFlowOnSpark提供桥接程序,每个Spark Executor启动一个对应TensorFlow进程,通过远程进程通信(RPC)交互。
TensorFlowOnSpark架构。TensorFlow训练程序用Spark集群运行,管理Spark集群步骤:预留,在Executor执行每个TensorFlow进程保留一个端口,启动数据消息监听器。启动,在Executor启动TensorFlow主函数。数据获取,TensorFlow Readers和QueueRunners机制直接读取HDFS数据文件,Spark不访问数据;Feeding,SparkRDD 数据发送TensorFlow节点,数据通过feed_dict机制传入TensorFlow计算图。关闭,关闭Executor TensorFlow计算节点、参数服务节点。Spark Driver->Spark Executor->参数服务器->TensorFlow Core->gRPC、RDMA->HDFS数据集。http://yahoohadoop.tumblr.com/post/157196317141/open-sourcing-tensorflowonspark-distributed-deep 。
TensorFlowOnSpark MNIST。https://github.com/yahoo/TensorFlowOnSpark/wiki/GetStarted_standalone 。Standalone模式Spark集群,一台计算机。安装 Spark、Hadoop。部署Java 1.8.0 JDK。下载Spark2.1.0版 http://spark.apache.org/downloads.html 。下载Hadoop2.7.3版 http://hadoop.apache.org/#Download+Hadoop 。0.12.1版本支持较好。
修改配置文件,设置环境变量,启动Hadoop:$HADOOP_HOME/sbin/start-all.sh。检出TensorFlowOnSpark源代码:
源代码打包,提交任务使用:
设置TensorFlowOnSpark根目录环境变量:
启动Spark主节点(master):
配置两个工作节点(worker)实例,master-spark-URL连接主节点:
提交任务,MNIST zip文件转换为HDFS RDD 数据集:
查看处理过的数据集:
查看保存图片、标记向量:
把训练集、测试集分别保存RDD数据。
https://github.com/yahoo/TensorFlowOnSpark/blob/master/examples/mnist/mnist_data_setup.py 。
args = parser.parse_args()
print("args:",args)
sc = SparkContext(conf=SparkConf().setAppName("mnist_parallelize"))
if not args.read:
提交训练任务,开始训练,在HDFS生成mnist_model,命令:
mnist_dist.py 构建TensorFlow 分布式任务,定义分布式任务主函数,启动TensorFlow主函数map_fun,数据获取方式Feeding。获取TensorFlow集群和服务器实例:
TFNode调用tfspark.zip TFNode.py文件。
mnist_spark.py文件是训练主程序,TensorFlowOnSpark部署步骤:
预测命令:
还可以Amazon EC2运行及在Hadoop集群采用YARN模式运行。
参考资料:
《TensorFlow技术解析与实战》