一、前述

Spark是基于内存的计算框架,性能要优于Mapreduce,可以实现hadoop生态圈中的多个组件,是一个非常优秀的大数据框架,是Apache的顶级项目。One stack  rule  them all  霸气。

但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法

二、具体细节

1、Spark与MapReduce的区别

都是分布式计算框架,Spark基于内存,MR基于HDFS。Spark处理数据的能力一般是MR的十倍以上,Spark中除了基于内存计算外,还有DAG有向无环图来切分任务的执行先后顺序。

2、Spark运行模式

  • Local

             多用于本地测试,如在eclipse,idea中写程序测试等。

  • Standalone

Standalone是Spark自带的一个资源调度框架,它支持完全分布式。

  • Yarn

Hadoop生态圈里面的一个资源调度框架,Spark也是可以基于Yarn来计算的。

  • Mesos

          资源调度框架。

注意:要基于Yarn来进行资源调度,必须实现AppalicationMaster接口,Spark实现了这个接口,所以可以基于Yarn。

3、SparkCore

概念

RDD(Resilient Distributed Dateset),弹性分布式数据集。

RDD的五大特性:(比较重要)

  1. RDD是由一系列的partition组成的。
  2. 函数是作用在每一个partition(split)上的。
  3. RDD之间有一系列的依赖关系。
  4. 分区器是作用在K,V格式的RDD上。
  5. RDD提供一系列最佳的计算位置。Partiotion对外提供数据处理的本地化,计算移动,数据不移动。

【Spark篇】---Spark初始_数据

 

 

备注:

1、textFile方法底层封装的是读取MR读取文件的方式,读取文件之前先split,默认split大小是一个block大小。每个split对应一个partition。

 

2、RDD实际上不存储数据,存储的是计算逻辑,这里方便理解,暂时理解为存储数据。

 

3、什么是K,V格式的RDD?

  • 如果RDD里面存储的数据都是二元组对象,那么这个RDD我们就叫做K,V格式的RDD。

4、 哪里体现RDD的弹性(容错)?

  • partition数量,大小没有限制,体现了RDD的弹性。Partiotion个数可以控制。可以提高并行度。
  • RDD之间依赖关系,可以基于上一个RDD重新计算出RDD。

5、哪里体现RDD的分布式?

  • RDD是由Partition组成,partition是分布在不同节点上的。 RDD提供计算最佳位置,体现了数据本地化。体现了大数据中“计算移动数据不移动”的理念。

4、Spark任务执行原理

 

【Spark篇】---Spark初始_JVM_02

以上图中有四个机器节点,Driver和Worker是启动在节点上的进程,运行在JVM中的进程。

  • Driver与集群节点之间有频繁的通信。
  • Driver负责任务(tasks)的分发和结果的回收任务的调度。如果task的计算结果非常大就不要回收了。会造成oom。
  • Worker是Standalone资源调度框架里面资源管理的从节点。也是JVM进程。
  • Master是Standalone资源调度框架里面资源管理的主节点。也是JVM进程。

5、Spark代码流程

1、创建SparkConf对象

 

       SparkConf conf = new SparkConf().setMaster("local").setAppName("xxx")

  • 1.设置运行模式
  • 2.设置application name
  • 3.设置spark运行参数

   2、创建SparkContext对象

          集群的唯一入口

 

   3、基于Spark的上下文创建一个RDD,对RDD进行处理。

          由SparkContext创建RDD

 

   4、应用程序中要有Action类算子来触发Transformation类算子执行。

   5、关闭Spark上下文对象SparkContext。