一、前述

Spark中默认有两大类算子,Transformation(转换算子),懒执行。action算子,立即执行,有一个action算子 ,就有一个job。

通俗些来说由RDD变成RDD就是Transformation算子,由RDD转换成其他的格式就是Action算子。

 

二、常用Transformation算子

 假设数据集为此:

 

1、filter

   过滤符合条件的记录数,true保留,false过滤掉。

Java版:

package com.spark.spark.transformations;


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
/**
* filter
* 过滤符合符合条件的记录数,true的保留,false的过滤掉。
*
*/
public class Operator_filter {
public static void main(String[] args) {
/**
* SparkConf对象中主要设置Spark运行的环境参数。
* 1.运行模式
* 2.设置Application name
* 3.运行的资源需求
*/
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("filter");
/**
* JavaSparkContext对象是spark运行的上下文,是通往集群的唯一通道。
*/
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> resultRDD = lines.filter(new Function<String, Boolean>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Boolean call(String line) throws Exception {
return !line.contains("hadoop");//这里是不等于
}

});

resultRDD.foreach(new VoidFunction<String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(String line) throws Exception {
System.out.println(line);
}
});
jsc.stop();
}
}



scala版:

函数解释:

【Spark篇】---Spark中Transformations转换算子_java

 

进来一个String,出去一个Booean.

结果:

 

【Spark篇】---Spark中Transformations转换算子_apache_02

 

 2、map

将一个RDD中的每个数据项,通过map中的函数映射变为一个新的元素。

特点:输入一条,输出一条数据。

 

/**
* map
* 通过传入的函数处理每个元素,返回新的数据集。
* 特点:输入一条,输出一条。
*
*
* @author root
*
*/
public class Operator_map {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("map");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> line = jsc.textFile("./words.txt");
JavaRDD<String> mapResult = line.map(new Function<String, String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public String call(String s) throws Exception {
return s+"~";
}
});

mapResult.foreach(new VoidFunction<String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});

jsc.stop();
}
}


函数解释:

【Spark篇】---Spark中Transformations转换算子_apache_03

进来一个String,出去一个String。

函数结果:

【Spark篇】---Spark中Transformations转换算子_java_04


 3、flatMap(压扁输出,输入一条,输出零到多条)

先map后flat。与map类似,每个输入项可以映射为0到多个输出项。

 

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction;

/**
* flatMap
* 输入一条数据,输出0到多条数据。
* @author root
*
*/
public class Operator_flatMap {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("flatMap");

JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMapResult = lines.flatMap(new FlatMapFunction<String, String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterable<String> call(String s) throws Exception {

return Arrays.asList(s.split(" "));
}

});
flatMapResult.foreach(new VoidFunction<String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(String t) throws Exception {
System.out.println(t);
}
});

jsc.stop();
}
}


函数解释:

【Spark篇】---Spark中Transformations转换算子_apache_05

进来一个String,出去一个集合。

Iterater 集合

iterator 遍历元素

函数结果:

【Spark篇】---Spark中Transformations转换算子_java_06

 

4、sample(随机抽样)

随机抽样算子,根据传进去的小数按比例进行又放回或者无放回的抽样。(True,fraction,long)

True 抽样放回

Fraction 一个比例 float 大致

第三个参数:随机种子,抽到的样本一样 方便测试

 

package com.spark.spark.transformations;

import java.util.ArrayList;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

public class Operator_sample {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("sample");

JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaPairRDD<String, Integer> flatMapToPair = lines.flatMapToPair(new PairFlatMapFunction<String, String, Integer>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterable<Tuple2<String, Integer>> call(String t)
throws Exception {
List<Tuple2<String,Integer>> tupleList = new ArrayList<Tuple2<String,Integer>>();
tupleList.add(new Tuple2<String,Integer>(t,1));
return tupleList;
}
});
JavaPairRDD<String, Integer> sampleResult = flatMapToPair.sample(true,0.3,4);//样本有7个所以大致抽样为1-2个
sampleResult.foreach(new VoidFunction<Tuple2<String,Integer>>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
});

jsc.stop();
}
}


函数结果:

【Spark篇】---Spark中Transformations转换算子_java_07

 

 5.reduceByKey

将相同的Key根据相应的逻辑进行处理。


package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

public class Operator_reduceByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("reduceByKey");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMap = lines.flatMap(new FlatMapFunction<String, String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
JavaPairRDD<String, Integer> mapToPair = flatMap.mapToPair(new PairFunction<String, String, Integer>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Tuple2<String, Integer> call(String t) throws Exception {
return new Tuple2<String,Integer>(t,1);
}

});

JavaPairRDD<String, Integer> reduceByKey = mapToPair.reduceByKey(new Function2<Integer,Integer,Integer>(){

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}

},10);
reduceByKey.foreach(new VoidFunction<Tuple2<String,Integer>>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
});

jsc.stop();
}
}


 函数解释:

【Spark篇】---Spark中Transformations转换算子_apache_08

函数结果:

【Spark篇】---Spark中Transformations转换算子_apache_09


6、sortByKey/sortBy

作用在K,V格式的RDD上,对key进行升序或者降序排序。

Sortby在java中没有

 

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

public class Operator_sortByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("sortByKey");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> flatMap = lines.flatMap(new FlatMapFunction<String, String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterable<String> call(String t) throws Exception {
return Arrays.asList(t.split(" "));
}
});
JavaPairRDD<String, Integer> mapToPair = flatMap.mapToPair(new PairFunction<String, String, Integer>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Tuple2<String, Integer> call(String s) throws Exception {
return new Tuple2<String, Integer>(s, 1);
}
});

JavaPairRDD<String, Integer> reduceByKey = mapToPair.reduceByKey(new Function2<Integer, Integer, Integer>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
});
reduceByKey.mapToPair(new PairFunction<Tuple2<String,Integer>, Integer, String>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Tuple2<Integer, String> call(Tuple2<String, Integer> t)
throws Exception {
return new Tuple2<Integer, String>(t._2, t._1);
}
}).sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer,String>, String, Integer>() {//先把key.value对调,然后排完序后再对调回来 false是降序,True是升序

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Tuple2<String, Integer> call(Tuple2<Integer, String> t)
throws Exception {
return new Tuple2<String,Integer>(t._2,t._1);
}
}).foreach(new VoidFunction<Tuple2<String,Integer>>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t);
}
});
}
}


 代码解释:先对调,排完序,在对调过来

【Spark篇】---Spark中Transformations转换算子_java_10

 

 代码结果:

【Spark篇】---Spark中Transformations转换算子_spark_11