一、前述
Action类算子也是一类算子(函数)叫做行动算子,如foreach,collect,count等。Transformations类算子是延迟执行,Action类算子是触发执行。一个application应用程序(就是我们编写的一个应用程序)中有几个Action类算子执行,就有几个job运行。
二、具体
原始数据集:
1、count
返回数据集中的元素数。会在结果计算完成后回收到Driver端。返回行数
package com.spark.spark.actions;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
/**
* count
* 返回结果集中的元素数,会将结果回收到Driver端。
*
*/
public class Operator_count {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("collect");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
long count = lines.count();
System.out.println(count);
jsc.stop();
}
}
结果:返回行数即元素数
2、take(n)
first=take(1) 返回数据集中的第一个元素。
前n个元素的集合。是一个(array)有几个partiotion 会有几个job触发
package com.spark.spark.actions;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
/**
* take
*
* @author root
*
*/
public class Operator_takeAndFirst {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("take");
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> parallelize = jsc.parallelize(Arrays.asList("a","b","c","d"));
List<String> take = parallelize.take(2);
String first = parallelize.first();
for(String s:take){
System.out.println(s);
}
jsc.stop();
}
}
结果:
3、foreach
循环遍历数据集中的每个元素,运行相应的逻辑。
4、collect
将计算结果回收到Driver端。当数据量很大时就不要回收了,会造成oom.
一般在使用过滤算子或者一些能返回少量数据集的算子后
package com.spark.spark.actions;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
/**
* collect
* 将计算的结果作为集合拉回到driver端,一般在使用过滤算子或者一些能返回少量数据集的算子后,将结果回收到Driver端打印显示。
*
*/
public class Operator_collect {
public static void main(String[] args) {
/**
* SparkConf对象中主要设置Spark运行的环境参数。
* 1.运行模式
* 2.设置Application name
* 3.运行的资源需求
*/
SparkConf conf = new SparkConf();
conf.setMaster("local");
conf.setAppName("collect");
/**
* JavaSparkContext对象是spark运行的上下文,是通往集群的唯一通道。
*/
JavaSparkContext jsc = new JavaSparkContext(conf);
JavaRDD<String> lines = jsc.textFile("./words.txt");
JavaRDD<String> resultRDD = lines.filter(new Function<String, Boolean>() {
/**
*
*/
private static final long serialVersionUID = 1L;
@Override
public Boolean call(String line) throws Exception {
return !line.contains("hadoop");
}
});
List<String> collect = resultRDD.collect();
for(String s :collect){
System.out.println(s);
}
jsc.stop();
}
}
结果:
- countByKey
作用到K,V格式的RDD上,根据Key计数相同Key的数据集元素。(也就是个数)
java代码:
package com.spark.spark.actions;
import java.util.Arrays;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
/**
* countByKey
*
* 作用到K,V格式的RDD上,根据Key计数相同Key的数据集元素。返回一个Map<K,Object>
* @author root
*
*/
public class Operator_countByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("countByKey");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaPairRDD<Integer, String> parallelizePairs = sc.parallelizePairs(Arrays.asList(
new Tuple2<Integer,String>(1,"a"),
new Tuple2<Integer,String>(2,"b"),
new Tuple2<Integer,String>(3,"c"),
new Tuple2<Integer,String>(4,"d"),
new Tuple2<Integer,String>(4,"e")
));
Map<Integer, Object> countByKey = parallelizePairs.countByKey();
for(Entry<Integer,Object> entry : countByKey.entrySet()){
System.out.println("key:"+entry.getKey()+"value:"+entry.getValue());
}
}
}
结果:
- countByValue
根据数据集每个元素相同的内容来计数。返回相同内容的元素对应的条数。
java代码:
package com.spark.spark.actions;
import java.util.Arrays;
import java.util.Map;
import java.util.Map.Entry;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import scala.Tuple2;
/**
* countByValue
* 根据数据集每个元素相同的内容来计数。返回相同内容的元素对应的条数。
*
* @author root
*
*/
public class Operator_countByValue {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("countByKey");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaPairRDD<Integer, String> parallelizePairs = sc.parallelizePairs(Arrays.asList(
new Tuple2<Integer,String>(1,"a"),
new Tuple2<Integer,String>(2,"b"),
new Tuple2<Integer,String>(2,"c"),
new Tuple2<Integer,String>(3,"c"),
new Tuple2<Integer,String>(4,"d"),
new Tuple2<Integer,String>(4,"d")
));
Map<Tuple2<Integer, String>, Long> countByValue = parallelizePairs.countByValue();
for(Entry<Tuple2<Integer, String>, Long> entry : countByValue.entrySet()){
System.out.println("key:"+entry.getKey()+",value:"+entry.getValue());
}
}
}
scala代码:
package com.bjsxt.spark.actions
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
/**
* countByValue
* 根据数据集每个元素相同的内容来计数。返回相同内容的元素对应的条数。
*/
object Operator_countByValue {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("countByValue")
val sc = new SparkContext(conf)
val rdd1 = sc.makeRDD(List("a","a","b"))
val rdd2 = rdd1.countByValue()
rdd2.foreach(println)
sc.stop()
}
}
代码结果:
java:
scala:
- reduce
聚合逻辑聚合数据集中的每个元素。(reduce里面需要具体的逻辑,根据里面的逻辑对相同分区的数据进行计算)
java代码:
package com.spark.spark.actions;
import java.util.Arrays;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
/**
* reduce
*
* 根据聚合逻辑聚合数据集中的每个元素。
* @author root
*
*/
public class Operator_reduce {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("reduce");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<Integer> parallelize = sc.parallelize(Arrays.asList(1,2,3,4,5));
Integer reduceResult = parallelize.reduce(new Function2<Integer, Integer, Integer>() {
/**
*
*/
private static final long serialVersionUID = 1L;
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1+v2;
}
});
System.out.println(reduceResult);
sc.stop();
}
}
scala代码:
package com.bjsxt.spark.actions
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
/**
* reduce
*
* 根据聚合逻辑聚合数据集中的每个元素。
*/
object Operator_reduce {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("reduce")
val sc = new SparkContext(conf)
val rdd1 = sc.makeRDD(Array(1,2))
val result = rdd1.reduce(_+_)
println(result)
sc.stop()
}
}
结果:
java:
scala: