一、前述

今天继续整理几个Transformation算子如下:

  • mapPartitionWithIndex
  • repartition
  • coalesce
  • groupByKey
  • zip
  • zipWithIndex

二、具体细节

  • mapPartitionWithIndex

 

类似于mapPartitions,除此之外还会携带分区的索引值。

java代码:

package com.spark.spark.transformations;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;

public class Operator_mapPartitionWithIndex {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("mapPartitionWithIndex");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> names = Arrays.asList("zhangsan1", "zhangsan2", "zhangsan3","zhangsan4");

/**
* 这里的第二个参数是设置并行度,也是RDD的分区数,并行度理论上来说设置大小为core的2~3倍
*/
JavaRDD<String> parallelize = sc.parallelize(names, 3);
JavaRDD<String> mapPartitionsWithIndex = parallelize.mapPartitionsWithIndex(
new Function2<Integer, Iterator<String>, Iterator<String>>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterator<String> call(Integer index, Iterator<String> iter)
throws Exception {
List<String> list = new ArrayList<String>();
while(iter.hasNext()){
String s = iter.next();
list.add(s+"~");
System.out.println("partition id is "+index +",value is "+s );
}
return list.iterator();
}
}, true);
mapPartitionsWithIndex.collect();
sc.stop();
}
}


scala代码:

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import scala.collection.mutable.ListBuffer

object Operator_mapPartitionsWithIndex {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("mapPartitionsWithIndex")
val sc = new SparkContext(conf)
val rdd = sc.makeRDD(List("a","b","c"),3)
rdd.mapPartitionsWithIndex((index,iter)=>{
val list = ListBuffer[String]()
while(iter.hasNext){
val v = iter.next()
list.+(v)
println("index = "+index+" , value = "+v)
}
list.iterator
}, true).foreach(println)
sc.stop();

}
}



代码解释:

【Spark篇】---Spark中transformations算子二_java

结果:

【Spark篇】---Spark中transformations算子二_java_02


  • coalesce

            coalesce常用来减少分区,第二个参数是减少分区的过程中是否产生shuffle。

            true为产生shuffle,false不产生shuffle。默认是false。

           如果coalesce设置的分区数比原来的RDD的分区数还多的话,第二个参数设置为false不会起作用,如果设置成true,效果和repartition一样。即repartition(numPartitions) = coalesce(numPartitions,true)

 

java代码:

 


package com.spark.spark.transformations;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
/**
* coalesce减少分区
* 第二个参数是减少分区的过程中是否产生shuffle,true是产生shuffle,false是不产生shuffle,默认是false.
* 如果coalesce的分区数比原来的分区数还多,第二个参数设置false,即不产生shuffle,不会起作用。
* 如果第二个参数设置成true则效果和repartition一样,即coalesce(numPartitions,true) = repartition(numPartitions)
*
* @author root
*
*/
public class Operator_coalesce {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("coalesce");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> list = Arrays.asList(
"love1","love2","love3",
"love4","love5","love6",
"love7","love8","love9",
"love10","love11","love12"
);

JavaRDD<String> rdd1 = sc.parallelize(list,3);
JavaRDD<String> rdd2 = rdd1.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>(){

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterator<String> call(Integer partitionId, Iterator<String> iter)
throws Exception {
List<String> list = new ArrayList<String>();
while(iter.hasNext()){
list.add("RDD1的分区索引:ll【"+partitionId+"】,值为:"+iter.next());
}
return list.iterator();
}

}, true);
JavaRDD<String> coalesceRDD = rdd2.coalesce(2, false);//不产生shuffle
//JavaRDD<String> coalesceRDD = rdd2.coalesce(2, true);//产生shuffle

//JavaRDD<String> coalesceRDD = rdd2.coalesce(4,false);//设置分区数大于原RDD的分区数且不产生shuffle,不起作用
// System.out.println("coalesceRDD partitions length = "+coalesceRDD.partitions().size());

//JavaRDD<String> coalesceRDD = rdd2.coalesce(5,true);//设置分区数大于原RDD的分区数且产生shuffle,相当于repartition
// JavaRDD<String> coalesceRDD = rdd2.repartition(4);
JavaRDD<String> result = coalesceRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>(){

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterator<String> call(Integer partitionId, Iterator<String> iter)
throws Exception {
List<String> list = new ArrayList<String>();
while(iter.hasNext()){
list.add("coalesceRDD的分区索引:【"+partitionId+"】,值为: "+iter.next());

}
return list.iterator();
}

}, true);
for(String s: result.collect()){
System.out.println(s);
}
sc.stop();
}
}



 

scala代码:

package com.bjsxt.spark.transformations

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import scala.collection.mutable.ListBuffer

object Operator_repartition {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("repartition")
val sc = new SparkContext(conf)

val rdd1 = sc.makeRDD(List(1,2,3,4,5,6,7),3)
val rdd2 = rdd1.mapPartitionsWithIndex((partitionIndex,iter)=>{
val list = new ListBuffer[String]()
while(iter.hasNext){
list += "rdd1partitionIndex : "+partitionIndex+",value :"+iter.next()
}
list.iterator
})

rdd2.foreach{ println }

val rdd3 = rdd2.repartition(4)
val result = rdd3.mapPartitionsWithIndex((partitionIndex,iter)=>{
val list = ListBuffer[String]()
while(iter.hasNext){
list +=("repartitionIndex : "+partitionIndex+",value :"+iter.next())
}
list.iterator
})
result.foreach{ println}


sc.stop()
}
}


package com.bjsxt.spark.transformations import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import scala.collection.mutable.ListBuffer object Operator_repartition { def main(args: Array[String]): Unit = { val conf = new SparkConf() conf.setMaster("local").setAppName("repartition") val sc = new SparkContext(conf) val rdd1 = sc.makeRDD(List(1,2,3,4,5,6,7),3) val rdd2 = rdd1.mapPartitionsWithIndex((partitionIndex,iter)=>{ val list = new ListBuffer[String]() while(iter.hasNext){ list += "rdd1partitionIndex : "+partitionIndex+",value :"+iter.next() } list.iterator }) rdd2.foreach{ println } val rdd3 = rdd2.repartition(4) val result = rdd3.mapPartitionsWithIndex((partitionIndex,iter)=>{ val list = ListBuffer[String]() while(iter.hasNext){ list +=("repartitionIndex : "+partitionIndex+",value :"+iter.next()) } list.iterator }) result.foreach{ println} sc.stop() } }

 代码解释:

JavaRDD<String> coalesceRDD = rdd2.coalesce(2, true);//产生shuffle 代码结果:

JavaRDD<String> coalesceRDD = rdd2.coalesce(2, false);//不产生shuffle 代码解释:

代码结果:

;//设置分区数大于原RDD的分区数且不产生shuffle,不起作用

代码结果:


JavaRDD<String> coalesceRDD = rdd2.coalesce(4,true);//设置分区数大于原RDD的分区数且产生shuffle,相当于repartition

代码结果:

【Spark篇】---Spark中transformations算子二_apache_03

 

  • repartition

增加或减少分区。会产生shuffle。(多个分区分到一个分区不会产生shuffle)


package com.spark.spark.transformations;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2;
/**
* repartition
* 减少或者增多分区,会产生shuffle.(多个分区分到一个分区中不会产生shuffle)
* @author root
*
*/
public class Operator_repartition {

public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("coalesce");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> list = Arrays.asList(
"love1","love2","love3",
"love4","love5","love6",
"love7","love8","love9",
"love10","love11","love12"
);

JavaRDD<String> rdd1 = sc.parallelize(list,3);
JavaRDD<String> rdd2 = rdd1.mapPartitionsWithIndex(
new Function2<Integer, Iterator<String>, Iterator<String>>(){

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterator<String> call(Integer partitionId, Iterator<String> iter)
throws Exception {
List<String> list = new ArrayList<String>();
while(iter.hasNext()){
list.add("RDD1的分区索引:【"+partitionId+"】,值为:"+iter.next());
}
return list.iterator();
}

}, true);
// JavaRDD<String> repartitionRDD = rdd2.repartition(1);
JavaRDD<String> repartitionRDD = rdd2.repartition(2);
// JavaRDD<String> repartitionRDD = rdd2.repartition(6);
JavaRDD<String> result = repartitionRDD.mapPartitionsWithIndex(new Function2<Integer, Iterator<String>, Iterator<String>>(){

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public Iterator<String> call(Integer partitionId, Iterator<String> iter)
throws Exception {
List<String> list = new ArrayList<String>();
while(iter.hasNext()){
list.add("repartitionRDD的分区索引:【"+partitionId+"】,值为: "+iter.next());

}
return list.iterator();
}

}, true);
for(String s: result.collect()){
System.out.println(s);
}
sc.stop();
}

}


scala代码:

 

package com.bjsxt.spark.transformations

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import scala.collection.mutable.ListBuffer

object Operator_repartition {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("repartition")
val sc = new SparkContext(conf)

val rdd1 = sc.makeRDD(List(1,2,3,4,5,6,7),3)
val rdd2 = rdd1.mapPartitionsWithIndex((partitionIndex,iter)=>{
val list = new ListBuffer[String]()
while(iter.hasNext){
list += "rdd1partitionIndex : "+partitionIndex+",value :"+iter.next()
}
list.iterator
})

rdd2.foreach{ println }

val rdd3 = rdd2.repartition(4)
val result = rdd3.mapPartitionsWithIndex((partitionIndex,iter)=>{
val list = ListBuffer[String]()
while(iter.hasNext){
list +=("repartitionIndex : "+partitionIndex+",value :"+iter.next())
}
list.iterator
})
result.foreach{ println}


sc.stop()
}
}


代码解释:

JavaRDD<String> repartitionRDD = rdd2.repartition(2);


代码结果:

JavaRDD<String> repartitionRDD = rdd2.repartition(1);//不产生shuffle 代码结果:

【Spark篇】---Spark中transformations算子二_apache_04

  • groupByKey(是一个transformation算子注意和reducebykey区分)

              作用在K,V格式的RDD上。根据Key进行分组。作用在(K,V),返回(K,Iterable <V>)。

java代码:

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

public class Operator_groupByKey {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("groupByKey");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaPairRDD<String, Integer> parallelizePairs = sc.parallelizePairs(Arrays.asList(
new Tuple2<String,Integer>("a", 1),
new Tuple2<String,Integer>("a", 2),
new Tuple2<String,Integer>("b", 3),
new Tuple2<String,Integer>("c", 4),
new Tuple2<String,Integer>("d", 5),
new Tuple2<String,Integer>("d", 6)
));

JavaPairRDD<String, Iterable<Integer>> groupByKey = parallelizePairs.groupByKey();
groupByKey.foreach(new VoidFunction<Tuple2<String,Iterable<Integer>>>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(Tuple2<String, Iterable<Integer>> t) throws Exception {
System.out.println(t);
}
});

}
}


 scala代码:


package com.bjsxt.spark.transformations

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

object Operator_groupByKey {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("groupByKey")
val sc = new SparkContext(conf)
val rdd1 = sc.makeRDD(Array(
(1,"a"),
(1,"b"),
(2,"c"),
(3,"d")
))

val result = rdd1.groupByKey()
result.foreach(println)
sc.stop()
}
}


 代码结果:

【Spark篇】---Spark中transformations算子二_java_05

 

  • zip

            将两个RDD中的元素(KV格式/非KV格式)变成一个KV格式的RDD,两个RDD的个数必须相同。

java代码:

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.SparkContext;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;

public class Operator_zip {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("zip");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> nameRDD = sc.parallelize(Arrays.asList("zhangsan","lisi","wangwu"));
JavaRDD<Integer> scoreRDD = sc.parallelize(Arrays.asList(100,200,300));
// JavaRDD<Integer> scoreRDD = sc.parallelize(Arrays.asList(100,200,300,400));
JavaPairRDD<String, Integer> zip = nameRDD.zip(scoreRDD);
zip.foreach(new VoidFunction<Tuple2<String,Integer>>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(Tuple2<String, Integer> tuple) throws Exception {
System.out.println("tuple --- " + tuple);
}
});

// JavaPairRDD<String, String> parallelizePairs = sc.parallelizePairs(Arrays.asList(
// new Tuple2<String, String >("a","aaa"),
// new Tuple2<String, String >("b","bbb"),
// new Tuple2<String, String >("c","ccc")
// ));
// JavaPairRDD<String, String> parallelizePairs1 = sc.parallelizePairs(Arrays.asList(
// new Tuple2<String, String >("1","111"),
// new Tuple2<String, String >("2","222"),
// new Tuple2<String, String >("3","333")
// ));
// JavaPairRDD<Tuple2<String, String>, Tuple2<String, String>> result = parallelizePairs.zip(parallelizePairs1);

sc.stop();
}
}


scala代码:

 

package com.bjsxt.spark.transformations

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
/**
* 将两个RDD中的元素(KV格式/非KV格式)变成一个KV格式的RDD,两个RDD的个数必须相同。
*/
object Operator_zip {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setAppName("zip").setMaster("local")
val sc = new SparkContext(conf)
val nameRDD = sc.makeRDD(Array("zhangsan","lisi","wangwu"))
val scoreRDD = sc.parallelize(Array(1,2,3))
val result = nameRDD.zip(scoreRDD)
result.foreach(println)
sc.stop()

}
}


结果:

【Spark篇】---Spark中transformations算子二_java_06

  • zipWithIndex

             该函数将RDD中的元素和这个元素在RDD中的索引号(从0开始)组合成(K,V)对。

java代码:

 

package com.spark.spark.transformations;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction;

import scala.Tuple2;
/**
* zipWithIndex 会将RDD中的元素和这个元素在RDD中的索引号(从0开始) 组合成(K,V)对
* @author root
*
*/
public class Operator_zipWithIndex {
public static void main(String[] args) {
SparkConf conf = new SparkConf();
conf.setMaster("local").setAppName("zipWithIndex");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> nameRDD = sc.parallelize(Arrays.asList("zhangsan","lisi","wangwu"));
JavaPairRDD<String, Long> zipWithIndex = nameRDD.zipWithIndex();
zipWithIndex.foreach(new VoidFunction<Tuple2<String,Long>>() {

/**
*
*/
private static final long serialVersionUID = 1L;

@Override
public void call(Tuple2<String, Long> t) throws Exception {
System.out.println("t ---- "+ t);
}
});
// JavaPairRDD<String, String> parallelizePairs = sc.parallelizePairs(Arrays.asList(
// new Tuple2<String, String >("a","aaa"),
// new Tuple2<String, String >("b","bbb"),
// new Tuple2<String, String >("c","ccc")
// ));
// JavaPairRDD<Tuple2<String, String>, Long> zipWithIndex2 = parallelizePairs.zipWithIndex();
// zipWithIndex2.foreach(new VoidFunction<Tuple2<Tuple2<String,String>,Long>>() {
//
// /**
// *
// */
// private static final long serialVersionUID = 1L;
//
// @Override
// public void call(Tuple2<Tuple2<String, String>, Long> t)
// throws Exception {
// System.out.println(" t ----" + t);
// }
// });
sc.stop();
}

}

 scala

package com.bjsxt.spark.transformations

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
/**
* 该函数将RDD中的元素和这个元素在RDD中的索引号(从0开始)组合成(K,V)对
*/
object zipWithIndex {
def main(args: Array[String]): Unit = {
val conf = new SparkConf()
conf.setMaster("local").setAppName("zipWithIndex")
val sc = new SparkContext(conf)
val rdd1 = sc.makeRDD(Array((1,"a"),(2,"b"),(3,"c")))
val result = rdd1.zipWithIndex()
result.foreach(println)
sc.stop()

}
}


代码结果:

java结果:

【Spark篇】---Spark中transformations算子二_apache_07

scala结果:

【Spark篇】---Spark中transformations算子二_spark_08