一、前述

    谱聚类(spectral clustering)是一种基于图论的聚类方法,主要思想是把所有的数据看做空间中的点,这些点之间可以用边连接起来。距离较远(或者相似度较低)的两个点之间的边权重值较低而距离较近(或者相似度较高)的两个点之间的边权重值较高,通过对所有数据点组成的图进行切图,让切图后不同的子图间边权重和尽可能的低,而子图内的边权重和尽可能的高,从而达到聚类的目的。

二、具体原理

1、优点
谱聚类相较于前面讲到的最最传统的k-means聚类方法,谱聚类又具有许多的优点:

1.只需要待聚类点之间的相似度矩阵就可以做聚类了。

2.对于不规则的数据(或者说是离群点)不是那么敏感。

3.k-means聚类算法比较适合于凸数据集(数据集内的任意两点之间的连线都在该数据集以内,简单理解就是圆形,可能不准确),而谱聚类则比较通用。

2、相关概念

相似度矩阵S的构建

构建相似度的矩阵的过程中,可以使用欧氏距离、余弦相似度、高斯相似度等来计算数据点之间的相似度,选用哪个要根据你自己的实际情况来。不过在谱聚类中推荐使用的是高斯相似度,但是我在我的工程中使用的是余弦相似度。

拉普拉斯矩阵
 它的定义很简单,拉普拉斯矩阵。是度矩阵,也就是相似度矩阵的每一行(或者每一列)加和得到的一个对角矩阵。W就是图的邻接矩阵。

相似矩阵

邻接矩阵它是由任意两点之间的权重值组成的矩阵。通常我们可以自己输入权重,但是在谱聚类中,我们只有数据点的定义,并没有直接给出这个邻接矩阵,那么怎么得到这个邻接矩阵呢?
基本思想是,距离较远的两个点之间的边权重值较低,而距离较近的两个点之间的边权重值较高,不过这仅仅是定性,我们需要定量的权重值。一般来说我们可以通过样本点距离度量的相似矩阵来获得邻接矩阵。

构建邻接矩阵的方法有三类。-邻近法,K邻近法和全连接法。

    对于-邻近法,它设置了一个距离阈值,然后用欧式距离度量任意两点和的距离。即相似矩阵的,  然后根据和的大小关系,来定义邻接矩阵如下:

    从上式可见,两点间的权重要不就是,要不就是0,没有其他的信息了。距离远近度量很不精确,因此在实际应用中,我们很少使用-邻近法。

    第二种定义邻接矩阵的方法是K邻近法,利用KNN算法遍历所有的样本点,取每个样本最近的k个点作为近邻,只有和样本距离最近的k个点之间的。但是这种方法会造成重构之后的邻接矩阵W非对称,我们后面的算法需要对称邻接矩阵。为了解决这种问题,一般采取下面两种方法之一:

    第一种K邻近法是只要一个点在另一个点的K近邻中,则保留

    第二种K邻近法是必须两个点互为K近邻中,才能保留

    第三种定义邻接矩阵的方法是全连接法,相比前两种方法,第三种方法所有的点之间的权重值都大于0,因此称之为全连接法。可以选择不同的核函数来定义边权重,常用的有多项式核函数,高斯核函数和Sigmoid核函数。最常用的是高斯核函数RBF,此时相似矩阵和邻接矩阵相同:
    在实际的应用中,使用第三种全连接法来建立邻接矩阵是最普遍的,而在全连接法中使用高斯径向核RBF是最普遍的。

3、算法流程:

               输入:样本集D=,相似矩阵的生成方式, 降维后的维度, 聚类方法,聚类后的维度

    输出: 簇划分

    1) 根据输入的相似矩阵的生成方式构建样本的相似矩阵S

    2)根据相似矩阵S构建邻接矩阵W,构建度矩阵D

    3)计算出拉普拉斯矩阵L

    4)求L的最小的个特征值所各自对应的特征向量

    6) 将特征向量组成维的特征矩阵F

    7)对F中的每一行作为一个维的样本,共n个样本,用输入的聚类方法进行聚类,聚类维数为。

    8)得到簇划分

4、总结

谱聚类算法是一个使用起来简单,但是讲清楚却不是那么容易的算法,它需要你有一定的数学基础。如果你掌握了谱聚类,相信你会对矩阵分析,图论有更深入的理解。同时对降维里的主成分分析也会加深理解。   

谱聚类算法的主要优点有:
    1)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法比如K-Means很难做到
    2)由于使用了降维,因此在处理高维数据聚类时的复杂度比传统聚类算法好
谱聚类算法的主要缺点有:
    1)如果最终聚类的维度非常高,则由于降维的幅度不够,谱聚类的运行速度和最后的聚类效果均不好。
    2) 聚类效果依赖于相似矩阵,不同的相似矩阵得到的最终聚类效果可能很不同。

三、代码

 

 

# !/usr/bin/python
# -*- coding:utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors
from sklearn.cluster import spectral_clustering
from sklearn.metrics import euclidean_distances


def expand(a, b):
d = (b - a) * 0.1
return a-d, b+d


if __name__ == "__main__":
matplotlib.rcParams['font.sans-serif'] = [u'SimHei']
matplotlib.rcParams['axes.unicode_minus'] = False

t = np.arange(0, 2*np.pi, 0.1)
data1 = np.vstack((np.cos(t), np.sin(t))).T
data2 = np.vstack((2*np.cos(t), 2*np.sin(t))).T
data3 = np.vstack((3*np.cos(t), 3*np.sin(t))).T
data = np.vstack((data1, data2, data3))

n_clusters = 3
m = euclidean_distances(data, squared=True)
sigma = np.median(m)

plt.figure(figsize=(12, 8), facecolor='w')
plt.suptitle(u'谱聚类', fontsize=20)
clrs = plt.cm.Spectral(np.linspace(0, 0.8, n_clusters))
for i, s in enumerate(np.logspace(-2, 0, 6)):
print(s)
af = np.exp(-m ** 2 / (s ** 2)) + 1e-6
y_hat = spectral_clustering(af, n_clusters=n_clusters, assign_labels='kmeans', random_state=1)
plt.subplot(2, 3, i+1)
for k, clr in enumerate(clrs):
cur = (y_hat == k)
plt.scatter(data[cur, 0], data[cur, 1], s=40, c=clr, edgecolors='k')
x1_min, x2_min = np.min(data, axis=0)
x1_max, x2_max = np.max(data, axis=0)
x1_min, x1_max = expand(x1_min, x1_max)
x2_min, x2_max = expand(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.grid(True)
plt.title(u'sigma = %.2f' % s, fontsize=16)
plt.tight_layout()
plt.subplots_adjust(top=0.9)
plt.show()