Java反射代码编写
Java反射就是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法;对于任意一个对象,都能够调用它的任意方法和属性;并且能改变它的属性。而这也是Java被视为动态(或准动态,为啥要说是准动态,因为一般而言的动态语言定义是程序运行时,允许改变程序结构或变量类型,这种语言称为动态语言。从这个观点看,Perl,Python,Ruby是动态语言,C++,Java,C#不是动态语言。)语言的一个关键性质。
我们知道反射机制允许程序在运行时取得任何一个已知名称的class的内部信息,包括包括其modifiers(修饰符),fields(属性),methods(方法)等,并可于运行时改变fields内容或调用methods。那么我们便可以更灵活的编写代码,代码可以在运行时装配,无需在组件之间进行源代码链接,降低代码的耦合度;还有动态代理的实现等等;但是需要注意的是反射使用不当会造成很高的资源消耗!
Class类
除了int
等基本类型外,Java的其他类型全部都是class
(包括interface
)。例如:
String
Object
Runnable
Exception
- ...
仔细思考,我们可以得出结论:class
(包括interface
)的本质是数据类型(Type
)。无继承关系的数据类型无法赋值:
Number n = new Double(123.456); // OK
String s = new Double(123.456); // compile error!
而class
是由JVM在执行过程中动态加载的。JVM在第一次读取到一种class
类型时,将其加载进内存。
每加载一种class
,JVM就为其创建一个Class
类型的实例,并关联起来。注意:这里的Class
类型是一个名叫Class
的class
。它长这样:
public final class Class {
private Class() {}
}
以String
类为例,当JVM加载String
类时,它首先读取String.class
文件到内存,然后,为String
类创建一个Class
实例并关联起来:
Class cls = new Class(String);
这个Class
实例是JVM内部创建的,如果我们查看JDK源码,可以发现Class
类的构造方法是private
,只有JVM能创建Class
实例,我们自己的Java程序是无法创建Class
实例的。
所以,JVM持有的每个Class
实例都指向一个数据类型(class
或interface
):
┌───────────────────────────┐
│ Class Instance │──────> String
├───────────────────────────┤
│name = "java.lang.String" │
└───────────────────────────┘
┌───────────────────────────┐
│ Class Instance │──────> Random
├───────────────────────────┤
│name = "java.util.Random" │
└───────────────────────────┘
┌───────────────────────────┐
│ Class Instance │──────> Runnable
├───────────────────────────┤
│name = "java.lang.Runnable"│
└───────────────────────────┘
一个Class
实例包含了该class
的所有完整信息:
┌───────────────────────────┐
│ Class Instance │──────> String
├───────────────────────────┤
│name = "java.lang.String" │
├───────────────────────────┤
│package = "java.lang" │
├───────────────────────────┤
│super = "java.lang.Object" │
├───────────────────────────┤
│interface = CharSequence...│
├───────────────────────────┤
│field = value[],hash,... │
├───────────────────────────┤
│method = indexOf()... │
└───────────────────────────┘
由于JVM为每个加载的class
创建了对应的Class
实例,并在实例中保存了该class
的所有信息,包括类名、包名、父类、实现的接口、所有方法、字段等,因此,如果获取了某个Class
实例,我们就可以通过这个Class
实例获取到该实例对应的class
的所有信息。
这种通过Class
实例获取class
信息的方法称为反射(Reflection)。
如何获取一个class
的Class
实例?有三个方法:
方法一:直接通过一个class
的静态变量class
获取:
Class cls = String.class;
方法二:如果我们有一个实例变量,可以通过该实例变量提供的getClass()
方法获取:
String s = "Hello";
Class cls = s.getClass();
方法三:如果知道一个class
的完整类名,可以通过静态方法Class.forName()
获取:
Class cls = Class.forName("java.lang.String");
因为Class
实例在JVM中是唯一的,所以,上述方法获取的Class
实例是同一个实例。可以用==
比较两个Class
实例:
Class cls1 = String.class;
String s = "Hello";
Class cls2 = s.getClass();
boolean sameClass = cls1 == cls2; // true
注意一下Class
实例比较和instanceof
的差别:
Integer n = new Integer(123);
boolean b3 = n instanceof Integer; // true
boolean b4 = n instanceof Number; // true
boolean b1 = n.getClass() == Integer.class; // true
boolean b2 = n.getClass() == Number.class; // false
用instanceof
不但匹配当前类型,还匹配当前类型的子类。而用==
判断class
实例可以精确地判断数据类型,但不能作子类型比较。
通常情况下,我们应该用instanceof
判断数据类型,因为面向抽象编程的时候,我们不关心具体的子类型。只有在需要精确判断一个类型是不是某个class
的时候,我们才使用==
判断class
实例。
因为反射的目的是为了获得某个实例的信息。因此,当我们拿到某个Object
实例时,我们可以通过反射获取该Object
的class
信息:
void printObjectInfo(Object obj) {
Class cls = obj.getClass();
}
要从Class
实例获取获取的基本信息,参考下面的代码:
public class Main {
public static void main(String[] args) {
printClassInfo("".getClass());
printClassInfo(Runnable.class);
printClassInfo(java.time.Month.class);
printClassInfo(String[].class);
printClassInfo(int.class);
}
static void printClassInfo(Class cls) {
System.out.println("Class name: " + cls.getName());
System.out.println("Simple name: " + cls.getSimpleName());
if (cls.getPackage() != null) {
System.out.println("Package name: " + cls.getPackage().getName());
}
System.out.println("is interface: " + cls.isInterface());
System.out.println("is enum: " + cls.isEnum());
System.out.println("is array: " + cls.isArray());
System.out.println("is primitive: " + cls.isPrimitive());
}
}
注意到数组(例如String[]
)也是一种Class
,而且不同于String.class
,它的类名是[Ljava.lang.String
。此外,JVM为每一种基本类型如int也创建了Class
,通过int.class
访问。
如果获取到了一个Class
实例,我们就可以通过该Class
实例来创建对应类型的实例:
// 获取String的Class实例:
Class cls = String.class;
// 创建一个String实例:
String s = (String) cls.newInstance();
上述代码相当于new String()
。通过Class.newInstance()
可以创建类实例,它的局限是:只能调用public
的无参数构造方法。带参数的构造方法,或者非public
的构造方法都无法通过Class.newInstance()
被调用。
动态加载
JVM在执行Java程序的时候,并不是一次性把所有用到的class全部加载到内存,而是第一次需要用到class时才加载。例如:
// Main.java
public class Main {
public static void main(String[] args) {
if (args.length > 0) {
create(args[0]);
}
}
static void create(String name) {
Person p = new Person(name);
}
}
当执行Main.java
时,由于用到了Main
,因此,JVM首先会把Main.class
加载到内存。然而,并不会加载Person.class
,除非程序执行到create()
方法,JVM发现需要加载Person
类时,才会首次加载Person.class
。如果没有执行create()
方法,那么Person.class
根本就不会被加载。
这就是JVM动态加载class
的特性。
动态加载class
的特性对于Java程序非常重要。利用JVM动态加载class
的特性,我们才能在运行期根据条件加载不同的实现类。例如,Commons Logging总是优先使用Log4j,只有当Log4j不存在时,才使用JDK的logging。利用JVM动态加载特性,大致的实现代码如下:
// Commons Logging优先使用Log4j:
LogFactory factory = null;
if (isClassPresent("org.apache.logging.log4j.Logger")) {
factory = createLog4j();
} else {
factory = createJdkLog();
}
boolean isClassPresent(String name) {
try {
Class.forName(name);
return true;
} catch (Exception e) {
return false;
}
}
这就是为什么我们只需要把Log4j的jar包放到classpath中,Commons Logging就会自动使用Log4j的原因。
JVM为每个加载的class
及interface
创建了对应的Class
实例来保存class
及interface
的所有信息;
获取一个class
对应的Class
实例后,就可以获取该class
的所有信息;
通过Class实例获取class
信息的方法称为反射(Reflection);
JVM总是动态加载class
,可以在运行期根据条件来控制加载class。
得到 Class 的三种方式
public class Person {
//私有属性
private String name = "Tom";
//公有属性
public int age = 18;
//构造方法
public Person() {
}
//私有方法
private void say(){
System.out.println("private say()...");
}
//公有方法
public void work(){
System.out.println("public work()...");
}
}
//1、通过对象调用 getClass() 方法来获取,通常应用在:比如你传过来一个 Object
// 类型的对象,而我不知道你具体是什么类,用这种方法
Person p1 = new Person();
Class c1 = p1.getClass();
//2、直接通过 类名.class 的方式得到,该方法最为安全可靠,程序性能更高
// 这说明任何一个类都有一个隐含的静态成员变量 class
Class c2 = Person.class;
//3、通过 Class 对象的 forName() 静态方法来获取,用的最多,
// 但可能抛出 ClassNotFoundException 异常
Class c3 = Class.forName("com.ys.reflex.Person");
需要注意的是:一个类在 JVM 中只会有一个 Class 实例,即我们对上面获取的 c1,c2,c3进行 equals 比较,发现都是true
通过 Class 类获取成员变量、成员方法、接口、超类、构造方法等
查阅 API 可以看到 Class 有很多方法:
getName():获得类的完整名字。
getFields():获得类的public类型的属性。
getDeclaredFields():获得类的所有属性。包括private 声明的和继承类
getMethods():获得类的public类型的方法。
getDeclaredMethods():获得类的所有方法。包括private 声明的和继承类
getMethod(String name, Class[] parameterTypes):获得类的特定方法,name参数指定方法的名字,parameterTypes 参数指定方法的参数类型。
getConstructors():获得类的public类型的构造方法。
getConstructor(Class[] parameterTypes):获得类的特定构造方法,parameterTypes 参数指定构造方法的参数类型。
newInstance():通过类的不带参数的构造方法创建这个类的一个对象。
//获得类完整的名字
String className = c2.getName();
System.out.println(className);//输出com.ys.reflex.Person
//获得类的public类型的属性。
Field[] fields = c2.getFields();
for(Field field : fields){
System.out.println(field.getName());//age
}
//获得类的所有属性。包括私有的
Field [] allFields = c2.getDeclaredFields();
for(Field field : allFields){
System.out.println(field.getName());//name age
}
//获得类的public类型的方法。这里包括 Object 类的一些方法
Method [] methods = c2.getMethods();
for(Method method : methods){
System.out.println(method.getName());//work waid equls toString hashCode等
}
//获得类的所有方法。
Method [] allMethods = c2.getDeclaredMethods();
for(Method method : allMethods){
System.out.println(method.getName());//work say
}
//获得指定的属性
Field f1 = c2.getField("age");
System.out.println(f1);
//获得指定的私有属性
Field f2 = c2.getDeclaredField("name");
//启用和禁用访问安全检查的开关,值为 true,则表示反射的对象在使用时应该取消 java 语言的访问检查;反之不取消
f2.setAccessible(true);
System.out.println(f2);
//创建这个类的一个对象
Object p2 = c2.newInstance();
//将 p2 对象的 f2 属性赋值为 Bob,f2 属性即为 私有属性 name
f2.set(p2,"Bob");
//使用反射机制可以打破封装性,导致了java对象的属性不安全。
System.out.println(f2.get(p2)); //Bob
//获取构造方法
Constructor [] constructors = c2.getConstructors();
for(Constructor constructor : constructors){
System.out.println(constructor.toString());//public com.ys.reflex.Person()
}
根据反射获取父类属性
父类 Parent.java
public class Parent {
public String publicField = "parent_publicField";
protected String protectField = "parent_protectField";
String defaultField = "parent_defaultField";
private String privateField = "parent_privateField";
}
子类 Son.java
public class Son extends Parent {
}
public class ReflectionTest {
@Test
public void testGetParentField() throws Exception{
Class c1 = Class.forName("com.ys.model.Son");
//获取父类私有属性值
System.out.println(getFieldValue(c1.newInstance(),"privateField"));
}
public static Field getDeclaredField(Object obj,String fieldName) {
Field field = null;
Class c = obj.getClass();
for(; c != Object.class ; c = c.getSuperclass()){
try {
field = c.getDeclaredField(fieldName);
field.setAccessible(true);
return field;
}catch (Exception e){
//这里甚么都不要做!并且这里的异常必须这样写,不能抛出去。
//如果这里的异常打印或者往外抛,则就不会执行c = c.getSuperclass(),最后就不会进入到父类中了
}
}
return null;
}
public static Object getFieldValue(Object object,String fieldName) throws Exception{
Field field = getDeclaredField(object,fieldName);
return field.get(object);
}
}
通过执行上述代码,我们获得了父类的私有属性值,这里要注意的是直接通过反射获取子类的对象是不能得到父类的属性值的,必须根据反射获得的子类 Class 对象在调用 getSuperclass() 方法获取父类对象,然后在通过父类对象去获取父类的属性值。
灵活使用反射能让我们代码更加灵活,这里比如JDBC原生代码注册驱动,hibernate 的实体类,Spring 的 AOP等等都有反射的实现。但是凡事都有两面性,反射也会消耗系统的性能,增加复杂性等,合理使用才是真!
访问字段
对任意的一个Object
实例,只要我们获取了它的Class
,就可以获取它的一切信息。
我们先看看如何通过Class
实例获取字段信息。Class
类提供了以下几个方法来获取字段:
- Field getField(name):根据字段名获取某个public的field(包括父类)
- Field getDeclaredField(name):根据字段名获取当前类的某个field(不包括父类)
- Field[] getFields():获取所有public的field(包括父类)
- Field[] getDeclaredFields():获取当前类的所有field(不包括父类)
public class Main {
public static void main(String[] args) throws Exception {
Class stdClass = Student.class;
// 获取public字段"score":
System.out.println(stdClass.getField("score"));
// 获取继承的public字段"name":
System.out.println(stdClass.getField("name"));
// 获取private字段"grade":
System.out.println(stdClass.getDeclaredField("grade"));
}
}
class Student extends Person {
public int score;
private int grade;
}
class Person {
public String name;
}
上述代码首先获取Student
的Class
实例,然后,分别获取public
字段、继承的public
字段以及private
字段,打印出的Field
类似:
public int Student.score
public java.lang.String Person.name
private int Student.grade
一个Field
对象包含了一个字段的所有信息:
-
getName()
:返回字段名称,例如,"name"
; -
getType()
:返回字段类型,也是一个Class
实例,例如,String.class
; -
getModifiers()
:返回字段的修饰符,它是一个int
,不同的bit表示不同的含义。
以String
类的value
字段为例,它的定义是:
public final class String {
private final byte[] value;
}
我们用反射获取该字段的信息,代码如下:
Field f = String.class.getDeclaredField("value");
f.getName(); // "value"
f.getType(); // class [B 表示byte[]类型
int m = f.getModifiers();
Modifier.isFinal(m); // true
Modifier.isPublic(m); // false
Modifier.isProtected(m); // false
Modifier.isPrivate(m); // true
Modifier.isStatic(m); // false
获取字段值
利用反射拿到字段的一个Field
实例只是第一步,我们还可以拿到一个实例对应的该字段的值。
例如,对于一个Person
实例,我们可以先拿到name
字段对应的Field
,再获取这个实例的name
字段的值:
import java.lang.reflect.Field;
public class Main {
public static void main(String[] args) throws Exception {
Object p = new Person("Xiao Ming");
Class c = p.getClass();
Field f = c.getDeclaredField("name");
Object value = f.get(p);
System.out.println(value); // "Xiao Ming"
}
}
class Person {
private String name;
public Person(String name) {
this.name = name;
}
}
上述代码先获取Class
实例,再获取Field
实例,然后,用Field.get(Object)
获取指定实例的指定字段的值。
运行代码,如果不出意外,会得到一个IllegalAccessException
,这是因为name
被定义为一个private
字段,正常情况下,Main
类无法访问Person
类的private
字段。要修复错误,可以将private
改为public
,或者,在调用Object value = f.get(p);
前,先写一句:
f.setAccessible(true);
调用Field.setAccessible(true)
的意思是,别管这个字段是不是public
,一律允许访问。
可以试着加上上述语句,再运行代码,就可以打印出private
字段的值。
有童鞋会问:如果使用反射可以获取private
字段的值,那么类的封装还有什么意义?
答案是正常情况下,我们总是通过p.name
来访问Person
的name
字段,编译器会根据public
、protected
和private
决定是否允许访问字段,这样就达到了数据封装的目的。
而反射是一种非常规的用法,使用反射,首先代码非常繁琐,其次,它更多地是给工具或者底层框架来使用,目的是在不知道目标实例任何信息的情况下,获取特定字段的值。
此外,setAccessible(true)
可能会失败。如果JVM运行期存在SecurityManager
,那么它会根据规则进行检查,有可能阻止setAccessible(true)
。例如,某个SecurityManager
可能不允许对java
和javax
开头的package
的类调用setAccessible(true)
,这样可以保证JVM核心库的安全。
设置字段值
通过Field实例既然可以获取到指定实例的字段值,自然也可以设置字段的值。
设置字段值是通过Field.set(Object, Object)
实现的,其中第一个Object
参数是指定的实例,第二个Object
参数是待修改的值。示例代码如下:
import java.lang.reflect.Field;
public class Main {
public static void main(String[] args) throws Exception {
Person p = new Person("Xiao Ming");
System.out.println(p.getName()); // "Xiao Ming"
Class c = p.getClass();
Field f = c.getDeclaredField("name");
f.setAccessible(true);
f.set(p, "Xiao Hong");
System.out.println(p.getName()); // "Xiao Hong"
}
}
class Person {
private String name;
public Person(String name) {
this.name = name;
}
public String getName() {
return this.name;
}
}
运行上述代码,打印的name
字段从Xiao Ming
变成了Xiao Hong
,说明通过反射可以直接修改字段的值。
同样的,修改非public
字段,需要首先调用setAccessible(true)
。
Java的反射API提供的Field
类封装了字段的所有信息:
通过Class
实例的方法可以获取Field
实例:getField()
,getFields()
,getDeclaredField()
,getDeclaredFields()
;
通过Field实例可以获取字段信息:getName()
,getType()
,getModifiers()
;
通过Field实例可以读取或设置某个对象的字段,如果存在访问限制,要首先调用setAccessible(true)
来访问非public
字段。
通过反射读写字段是一种非常规方法,它会破坏对象的封装。
调用方法
我们已经能通过Class
实例获取所有Field
对象,同样的,可以通过Class
实例获取所有Method
信息。Class
类提供了以下几个方法来获取Method
:
-
Method getMethod(name, Class...)
:获取某个public
的Method
(包括父类) -
Method getDeclaredMethod(name, Class...)
:获取当前类的某个Method
(不包括父类) -
Method[] getMethods()
:获取所有public
的Method
(包括父类) -
Method[] getDeclaredMethods()
:获取当前类的所有Method
(不包括父类)
我们来看一下示例代码:
public class Main {
public static void main(String[] args) throws Exception {
Class stdClass = Student.class;
// 获取public方法getScore,参数为String:
System.out.println(stdClass.getMethod("getScore", String.class));
// 获取继承的public方法getName,无参数:
System.out.println(stdClass.getMethod("getName"));
// 获取private方法getGrade,参数为int:
System.out.println(stdClass.getDeclaredMethod("getGrade", int.class));
}
}
class Student extends Person {
public int getScore(String type) {
return 99;
}
private int getGrade(int year) {
return 1;
}
}
class Person {
public String getName() {
return "Person";
}
}
上述代码首先获取Student
的Class
实例,然后,分别获取public
方法、继承的public
方法以及private
方法,打印出的Method
类似:
public int Student.getScore(java.lang.String)
public java.lang.String Person.getName()
private int Student.getGrade(int)
一个Method
对象包含一个方法的所有信息:
-
getName()
:返回方法名称,例如:"getScore"
; -
getReturnType()
:返回方法返回值类型,也是一个Class实例,例如:String.class
; -
getParameterTypes()
:返回方法的参数类型,是一个Class数组,例如:{String.class, int.class}
; -
getModifiers()
:返回方法的修饰符,它是一个int
,不同的bit表示不同的含义。
调用方法
当我们获取到一个Method
对象时,就可以对它进行调用。我们以下面的代码为例:
String s = "Hello world";
String r = s.substring(6); // "world"
如果用反射来调用substring
方法,需要以下代码:
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
// String对象:
String s = "Hello world";
// 获取String substring(int)方法,参数为int:
Method m = String.class.getMethod("substring", int.class);
// 在s对象上调用该方法并获取结果:
String r = (String) m.invoke(s, 6);
// 打印调用结果:
System.out.println(r);
}
}
注意到substring()
有两个重载方法,我们获取的是String substring(int)
这个方法。思考一下如何获取String substring(int, int)
方法。
对Method
实例调用invoke
就相当于调用该方法,invoke
的第一个参数是对象实例,即在哪个实例上调用该方法,后面的可变参数要与方法参数一致,否则将报错。
调用静态方法
如果获取到的Method表示一个静态方法,调用静态方法时,由于无需指定实例对象,所以invoke
方法传入的第一个参数永远为null
。我们以Integer.parseInt(String)
为例:
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
// 获取Integer.parseInt(String)方法,参数为String:
Method m = Integer.class.getMethod("parseInt", String.class);
// 调用该静态方法并获取结果:
Integer n = (Integer) m.invoke(null, "12345");
// 打印调用结果:
System.out.println(n);
}
}
调用非public方法
和Field类似,对于非public方法,我们虽然可以通过Class.getDeclaredMethod()
获取该方法实例,但直接对其调用将得到一个IllegalAccessException
。为了调用非public方法,我们通过Method.setAccessible(true)
允许其调用:
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
Person p = new Person();
Method m = p.getClass().getDeclaredMethod("setName", String.class);
m.setAccessible(true);
m.invoke(p, "Bob");
System.out.println(p.name);
}
}
class Person {
String name;
private void setName(String name) {
this.name = name;
}
}
此外,setAccessible(true)
可能会失败。如果JVM运行期存在SecurityManager
,那么它会根据规则进行检查,有可能阻止setAccessible(true)
。例如,某个SecurityManager
可能不允许对java
和javax
开头的package
的类调用setAccessible(true)
,这样可以保证JVM核心库的安全。
多态
我们来考察这样一种情况:一个Person
类定义了hello()
方法,并且它的子类Student
也覆写了hello()
方法,那么,从Person.class
获取的Method
,作用于Student
实例时,调用的方法到底是哪个?
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
// 获取Person的hello方法:
Method h = Person.class.getMethod("hello");
// 对Student实例调用hello方法:
h.invoke(new Student());
}
}
class Person {
public void hello() {
System.out.println("Person:hello");
}
}
class Student extends Person {
public void hello() {
System.out.println("Student:hello");
}
}
运行上述代码,发现打印出的是Student:hello
,因此,使用反射调用方法时,仍然遵循多态原则:即总是调用实际类型的覆写方法(如果存在)。上述的反射代码:
Method m = Person.class.getMethod("hello");
m.invoke(new Student());
实际上相当于:
Person p = new Student();
p.hello();
ava的反射API提供的Method对象封装了方法的所有信息:
通过Class
实例的方法可以获取Method
实例:getMethod()
,getMethods()
,getDeclaredMethod()
,getDeclaredMethods()
;
通过Method
实例可以获取方法信息:getName()
,getReturnType()
,getParameterTypes()
,getModifiers()
;
通过Method
实例可以调用某个对象的方法:Object invoke(Object instance, Object... parameters)
;
通过设置setAccessible(true)
来访问非public
方法;
通过反射调用方法时,仍然遵循多态原则。
调用构造方法
我们通常使用new
操作符创建新的实例:
Person p = new Person();
如果通过反射来创建新的实例,可以调用Class提供的newInstance()方法:
Person p = Person.class.newInstance();
调用Class.newInstance()的局限是,它只能调用该类的public无参数构造方法。如果构造方法带有参数,或者不是public,就无法直接通过Class.newInstance()来调用。
为了调用任意的构造方法,Java的反射API提供了Constructor对象,它包含一个构造方法的所有信息,可以创建一个实例。Constructor对象和Method非常类似,不同之处仅在于它是一个构造方法,并且,调用结果总是返回实例:
import java.lang.reflect.Constructor;
public class Main {
public static void main(String[] args) throws Exception {
// 获取构造方法Integer(int):
Constructor cons1 = Integer.class.getConstructor(int.class);
// 调用构造方法:
Integer n1 = (Integer) cons1.newInstance(123);
System.out.println(n1);
// 获取构造方法Integer(String)
Constructor cons2 = Integer.class.getConstructor(String.class);
Integer n2 = (Integer) cons2.newInstance("456");
System.out.println(n2);
}
}
通过Class实例获取Constructor的方法如下:
-
getConstructor(Class...)
:获取某个public
的Constructor
; -
getDeclaredConstructor(Class...)
:获取某个Constructor
; -
getConstructors()
:获取所有public
的Constructor
; -
getDeclaredConstructors()
:获取所有Constructor
。
注意Constructor
总是当前类定义的构造方法,和父类无关,因此不存在多态的问题。
调用非public
的Constructor
时,必须首先通过setAccessible(true)
设置允许访问。setAccessible(true)
可能会失败。
Constructor
对象封装了构造方法的所有信息;
通过Class
实例的方法可以获取Constructor
实例:getConstructor()
,getConstructors()
,getDeclaredConstructor()
,getDeclaredConstructors()
;
通过Constructor
实例可以创建一个实例对象:newInstance(Object... parameters)
; 通过设置setAccessible(true)
来访问非public
构造方法。
获取继承关系
当我们获取到某个Class
对象时,实际上就获取到了一个类的类型:
Class cls = String.class; // 获取到String的Class
还可以用实例的getClass()
方法获取:
String s = "";
Class cls = s.getClass(); // s是String,因此获取到String的Class
最后一种获取Class
的方法是通过Class.forName("")
,传入Class
的完整类名获取:
Class s = Class.forName("java.lang.String");
这三种方式获取的Class
实例都是同一个实例,因为JVM对每个加载的Class
只创建一个Class
实例来表示它的类型。
获取父类的Class
有了Class
实例,我们还可以获取它的父类的Class
:
public class Main {
public static void main(String[] args) throws Exception {
Class i = Integer.class;
Class n = i.getSuperclass();
System.out.println(n);
Class o = n.getSuperclass();
System.out.println(o);
System.out.println(o.getSuperclass());
}
}
运行上述代码,可以看到,Integer
的父类类型是Number
,Number
的父类是Object
,Object
的父类是null
。除Object
外,其他任何非interface
的Class
都必定存在一个父类类型。
获取interface
由于一个类可能实现一个或多个接口,通过Class
我们就可以查询到实现的接口类型。例如,查询Integer
实现的接口:
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
Class s = Integer.class;
Class[] is = s.getInterfaces();
for (Class i : is) {
System.out.println(i);
}
}
}
行上述代码可知,Integer
实现的接口有:
- java.lang.Comparable
- java.lang.constant.Constable
- java.lang.constant.ConstantDesc
要特别注意:getInterfaces()
只返回当前类直接实现的接口类型,并不包括其父类实现的接口类型:
import java.lang.reflect.Method;
public class Main {
public static void main(String[] args) throws Exception {
Class s = Integer.class.getSuperclass();
Class[] is = s.getInterfaces();
for (Class i : is) {
System.out.println(i);
}
}
}
Integer
的父类是Number
,Number
实现的接口是java.io.Serializable
。
此外,对所有interface
的Class
调用getSuperclass()
返回的是其父interface
或者null
:
System.out.println(java.io.Closeable.class.getSuperclass()); // AutoCloseable,因为Closeable继承自AutoCloseable
System.out.println(Runnable.class.getSuperclass()); // null,因为Runnable没有继承自其他接口
如果一个类没有实现任何interface
,那么getInterfaces()
返回空数组。
继承关系
当我们判断一个实例是否是某个类型时,正常情况下,使用instanceof
操作符:
Object n = Integer.valueOf(123);
boolean isDouble = n instanceof Double; // false
boolean isInteger = n instanceof Integer; // true
boolean isNumber = n instanceof Number; // true
boolean isSerializable = n instanceof java.io.Serializable; // true
如果是两个Class
实例,要判断一个向上转型是否成立,可以调用isAssignableFrom()
:
// Integer i = ?
Integer.class.isAssignableFrom(Integer.class); // true,因为Integer可以赋值给Integer
// Number n = ?
Number.class.isAssignableFrom(Integer.class); // true,因为Integer可以赋值给Number
// Object o = ?
Object.class.isAssignableFrom(Integer.class); // true,因为Integer可以赋值给Object
// Integer i = ?
Integer.class.isAssignableFrom(Number.class); // false,因为Number不能赋值给Integer
通过Class
对象可以获取继承关系:
-
Class getSuperclass()
:获取父类类型; -
Class[] getInterfaces()
:获取当前类实现的所有接口。
通过Class
对象的isAssignableFrom()
方法可以判断一个向上转型是否可以实现。
动态代理
我们来比较Java的class
和interface
的区别:
- 可以实例化
class
(非abstract
); - 不能实例化
interface
。
所有interface
类型的变量总是通过向上转型并指向某个实例的:
CharSequence cs = new StringBuilder();
有没有可能不编写实现类,直接在运行期创建某个interface
的实例呢?
这是可能的,因为Java标准库提供了一种动态代理(Dynamic Proxy)的机制:可以在运行期动态创建某个interface
的实例。
什么叫运行期动态创建?听起来好像很复杂。所谓动态代理,是和静态相对应的。我们来看静态代码怎么写:
定义接口:
public interface Hello {
void morning(String name);
}
编写实现类:
public class HelloWorld implements Hello {
public void morning(String name) {
System.out.println("Good morning, " + name);
}
}
创建实例,转型为接口并调用:
Hello hello = new HelloWorld();
hello.morning("Bob");
这种方式就是我们通常编写代码的方式。
还有一种方式是动态代码,我们仍然先定义了接口Hello
,但是我们并不去编写实现类,而是直接通过JDK提供的一个Proxy.newProxyInstance()
创建了一个Hello
接口对象。这种没有实现类但是在运行期动态创建了一个接口对象的方式,我们称为动态代码。JDK提供的动态创建接口对象的方式,就叫动态代理。
一个最简单的动态代理实现如下:
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
public class Main {
public static void main(String[] args) {
InvocationHandler handler = new InvocationHandler() {
@Override
public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
System.out.println(method);
if (method.getName().equals("morning")) {
System.out.println("Good morning, " + args[0]);
}
return null;
}
};
Hello hello = (Hello) Proxy.newProxyInstance(
Hello.class.getClassLoader(), // 传入ClassLoader
new Class[] { Hello.class }, // 传入要实现的接口
handler); // 传入处理调用方法的InvocationHandler
hello.morning("Bob");
}
}
interface Hello {
void morning(String name);
}
在运行期动态创建一个interface
实例的方法如下:
- 定义一个
InvocationHandler
实例,它负责实现接口的方法调用; - 通过
Proxy.newProxyInstance()
创建interface
实例,它需要3个参数:- 使用的
ClassLoader
,通常就是接口类的ClassLoader
; - 需要实现的接口数组,至少需要传入一个接口进去;
- 用来处理接口方法调用的
InvocationHandler
实例。
- 使用的
- 将返回的
Object
强制转型为接口。
动态代理实际上是JDK在运行期动态创建class字节码并加载的过程,它并没有什么黑魔法,把上面的动态代理改写为静态实现类大概长这样:
public class HelloDynamicProxy implements Hello {
InvocationHandler handler;
public HelloDynamicProxy(InvocationHandler handler) {
this.handler = handler;
}
public void morning(String name) {
handler.invoke(
this,
Hello.class.getMethod("morning"),
new Object[] { name });
}
}
其实就是JDK帮我们自动编写了一个上述类(不需要源码,可以直接生成字节码),并不存在可以直接实例化接口的黑魔法。
Java标准库提供了动态代理功能,允许在运行期动态创建一个接口的实例;
动态代理是通过Proxy
创建代理对象,然后将接口方法“代理”给InvocationHandler
完成的。