C. Boredom



time limit per test



memory limit per test



input



output



Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.

Given a sequence a consisting of n integers. The player can make several steps. In a single step he can choose an element of the sequence (let's denote itak) and delete it, at that all elements equal toak + 1 andak - 1 also must be deleted from the sequence. That step bringsak

Alex is a perfectionist, so he decided to get as many points as possible. Help him.



Input



The first line contains integer n (1 ≤ n ≤ 105) that shows how many numbers are in Alex's sequence.

The second line contains n integers a1, a2, ...,an (1 ≤ ai ≤ 105).



Output



Print a single integer — the maximum number of points that Alex can earn.



Sample test(s)



Input



2 1 2



Output



2



Input



3 1 2 3



Output



4



Input



9 1 2 1 3 2 2 2 2 3



Output



10



Note



Consider the third test example. At first step we need to choose any element equal to2. After that step our sequence looks like this [2, 2, 2, 2]. Then we do 4 steps, on each step we choose any element equals to2. In total we earn 10


显然每个数只有2个状态,被丢掉(相当于不选),选中后丢掉(相当于选)


所以决策过程就很明显了,dp[i]1]表示i这个数选中,那么既然他选了,i-1就不能选了,所以有dp[i][1] = dp[i-1][0] + num[i]*i;

dp[i][0] 表示被丢弃,那么i-1可选可不选,dp[i][0] = max(dp[i-1][1], dp[i-1][0])


大家可能会想,题目中说选了i,i-1,i+1都不能选,为什么可以单向推导dp呢,因为当我们计算i+1被选上时,用的是i没有被选上的情况,所以并不会影响,而计算i+1没被选上时,由于本身就没被选上了,那么i对它有无影响也就无所谓了


#include <map>  
#include <set>  
#include <list>  
#include <stack>  
#include <queue>  
#include <vector>  
#include <cstdio>  
#include <cmath>  
#include <cstring>  
#include <iostream>  
#include <algorithm>  
  
using namespace std;

const int N = 100010;
__int64 dp[N][2];

int main()
{
	int n;
	while (~scanf("%d", &n))
	{
		map<int, int> num;
		num.clear();
		int t, maxs = 0, mins = 0x3f3f3f3f;
		for (int i = 0; i < n; i++)
		{
			scanf("%d", &t);
			maxs = max(t, maxs);
			mins = min(t, mins);
			num[t]++;
		}
		memset ( dp, 0, sizeof(dp) );
		for (int i = mins; i <= maxs; i++)
		{
			dp[i][1] = dp[i - 1][0] + (__int64)num[i] * i;
			dp[i][0] = max(dp[i - 1][1], dp[i - 1][0]); 
		}
		printf("%I64d\n", max(dp[maxs][1], dp[maxs][0]));
	}
	return 0;
}