Mayor's posters


Time Limit: 1000MS

 

Memory Limit: 65536K

Total Submissions: 44910

 

Accepted: 13059


Description


The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.


They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.


Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.



Input


The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.


Output


For each input data set print the number of visible posters after all the posters are placed.


The picture below illustrates the case of the sample input.


POJ2528——Mayor


Sample Input


15 1 4 2 6 8 10 3 4 7 10


Sample Output


4


Source


Alberta Collegiate Programming Contest 2003.10.18

很好的一道题,首先要离散化,之前用map超时,改成二分就行了,看来以后得用二分
线段树维护一段区间的颜色

#include <map>
#include <set>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 20110;

int xis[N], ans, cnt, ret;
bool flag[N];
struct node
{
	int l, r;
	int col;
}tree[N << 2];

struct node2
{
	int l, r;
}post[N];

int BinSearh(int target)
{
	int l = 1, mid, r = ret;
	while (l <= r)
	{
		mid = (l + r) >> 1;
		if (xis[mid] > target)
		{
			r = mid - 1;
		}
		else if (xis[mid] < target)
		{
			l = mid + 1;
		}
		else
		{
			break;
		}
	}
	return mid;
}

void build(int p, int l, int r)
{
	tree[p].l = l;
	tree[p].r = r;
	tree[p].col = 0;
	if (l == r)
	{
		return;
	}
	int mid = (l + r) >> 1;
	build(p << 1, l, mid);
	build(p << 1 | 1, mid + 1, r);
}

void update(int p, int l, int r, int col)
{
	if (l <= tree[p].l && tree[p].r <= r)
	{
		tree[p].col = col;
		return;
	}
	if (tree[p].col)
	{
		tree[p << 1].col = tree[p].col;
		tree[p << 1 | 1].col = tree[p].col;
		tree[p].col = 0;
	}
	int mid = (tree[p].l + tree[p].r) >> 1;
	if (l > mid)
	{
		update(p << 1 | 1, l, r, col);
	}
	else if (r <= mid)
	{
		update(p << 1, l, r, col);
	}
	else
	{
		update(p << 1, l, mid, col);
		update(p << 1 | 1, mid + 1, r, col);
	}
}

void query(int p)
{
	if (tree[p].col)
	{
		if (!flag[tree[p].col])
		{
			ans++;
			flag[tree[p].col] = 1;
		}
		return;
	}
	query(p << 1);
	query(p << 1 | 1);
}

int main()
{
	int t, n;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d", &n);
		memset (flag, 0, sizeof(flag));
		map <int, int> new_x;
		new_x.clear();
		cnt = ans = 0;
		for (int i = 1; i <= n; ++i)
		{
			scanf("%d%d", &post[i].l, &post[i].r);
			xis[++cnt] = post[i].l;
			xis[++cnt] = post[i].r;
		}
		sort (xis + 1, xis + cnt + 1);
		ret = unique(xis + 1, xis + cnt + 1) - xis - 1;
		build(1, 1, ret);
		for (int i = 1; i <= n; ++i)
		{
			int l = BinSearh(post[i].l);
			int r = BinSearh(post[i].r);
			update(1, l, r, i);
		}
		query(1);
		printf("%d\n", ans);
	}
	return 0;
}