1.准备正负样本:
http://www.cnblogs.com/tornadomeet/archive/2012/03/27/2420088.html
这里我采用的负样本是用的是weizmann团队http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/dl.html 网站上的图像分割数据库,里面有灰色图和彩色图,这里当然选取灰度图了。
总共用了200幅图片,大小大约在300*200像素,截图如下所示:
可以看出这些200多张图片基本都没有人脸,所以说应该是可以的。
正负样本的图片准备好了,下面就开始制作正负样本的描述文件了。
首先建立好文件夹,把图片拷贝好,如下所示:
Pos_image中放入的是正样本,neg_image放入的是负样本,test_image放入的是测试样本。并将后面要用到的2个工具.exe文件也拷贝过来(在opencv的安装目录C:\Program Files\opencv2.3.1\build\common\x86下)。
2.生成正负样本描述文件:
建立正样本的描述文件:
打开cmd窗口,进入上图所在pos_img文件夹内,可以看到此文件夹图片显示如下:
使用命令dir /b >pos_image.txt。如图所示
且用editplus打开该文件,删除最后一行,最后将名字归一化如下所示:
其中的pos_image/是相对路径名,后面紧接着的是文件名,1代表一个文件,0 0 24 24表示这个文件的2个顶点位置坐标。保存退出即ok!
负样本的描述文件类似,只是不需要考虑其大小位置。
也是进入neg_imgae后在cmd内使用命令dir /b >neg_image.txt,如图所示:
同样删除最后一行文字,且将文件相对路径加入如下所示:
至此,训练数据准备完备了。
3.创建vec文件:
在创建vec文件时,需要把pos_image.txt和neg_image.txt两个样本描述文件剪切到上一目录,如图所示:
然后利用opencv_createsamples.exe应用程序在该目录下使用如下cmd命令:
其中的-vec是指定后面输出vec文件的文件名,-info指定正样本描述文件,-bg指定负样本描述文件,-w和-h分别指正样本的宽和高,-num表示正样本的个数。执行完该命令后就会在当前目录下生产一个pos.vec文件了。
4.使用opencv_haartraining.exe文件进行训练
首先在当前目录下新建一个xml文件夹用于存放生成的.xml文件。
在当前目录使用cmd命令:
Opcnv_haartraining.exe –data xml –vec pos.vec –bg neg_image.txt –nsplits 1 –sym –w 24 –h 24 –mode all –mem 1280
截图如下:
其中-data为输出xml中间文件的位置,-sym表示训练的目标为垂直对称,-nsplits 1表示使用简单的stump classfier分类。-mem 1280 表示允许使用计算机的1280M内存,-mode all 表示使用haar特征集的种类既有垂直的,又有45度角旋转的。
因为数据量不是很多,不到半个钟头就训练好了。在当前目录下生产了一个xml.xml文件,将其重名名为face_test.xml。
5.实验结果:
利用上面训练出来的face_test.xml文件来检测下人脸,首先来一张比较正面的人脸图
为了看看是否不是特别正的,且有背景干扰的结果,用了lena的图,检测结果如下:
http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html的代码类似,删减了人眼检测的代码而已,源码如下:
6.参考文献:
1. http://hi.baidu.com/zdd007007/blog/item/b2e7f026eec9e23f8644f959.html 的博客。
2. http://blog.csdn.net/guxj821/article/details/6341239
作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet