1.准备正负样本:


​http://www.cnblogs.com/tornadomeet/archive/2012/03/27/2420088.html​

     这里我采用的负样本是用的是weizmann团队​​http://www.wisdom.weizmann.ac.il/~vision/Seg_Evaluation_DB/dl.html​​ 网站上的图像分割数据库,里面有灰色图和彩色图,这里当然选取灰度图了。

     总共用了200幅图片,大小大约在300*200像素,截图如下所示:

haartraining生成.xml文件过程_机器学习

     可以看出这些200多张图片基本都没有人脸,所以说应该是可以的。

     正负样本的图片准备好了,下面就开始制作正负样本的描述文件了。

     首先建立好文件夹,把图片拷贝好,如下所示:

    

haartraining生成.xml文件过程_机器学习_02

     Pos_image中放入的是正样本,neg_image放入的是负样本,test_image放入的是测试样本。并将后面要用到的2个工具.exe文件也拷贝过来(在opencv的安装目录C:\Program Files\opencv2.3.1\build\common\x86下)。

2.生成正负样本描述文件:

     建立正样本的描述文件:

     打开cmd窗口,进入上图所在pos_img文件夹内,可以看到此文件夹图片显示如下:

     

haartraining生成.xml文件过程_人脸检测_03

     使用命令dir /b >pos_image.txt。如图所示

     

haartraining生成.xml文件过程_机器学习_04

    且用editplus打开该文件,删除最后一行,最后将名字归一化如下所示:

haartraining生成.xml文件过程_人脸检测_05

     其中的pos_image/是相对路径名,后面紧接着的是文件名,1代表一个文件,0 0 24 24表示这个文件的2个顶点位置坐标。保存退出即ok!

负样本的描述文件类似,只是不需要考虑其大小位置。

     也是进入neg_imgae后在cmd内使用命令dir /b >neg_image.txt,如图所示:

     

haartraining生成.xml文件过程_机器学习_06

     同样删除最后一行文字,且将文件相对路径加入如下所示:

  

haartraining生成.xml文件过程_人脸检测_07

 

     至此,训练数据准备完备了。

3.创建vec文件:

     在创建vec文件时,需要把pos_image.txt和neg_image.txt两个样本描述文件剪切到上一目录,如图所示:

haartraining生成.xml文件过程_机器学习_08

     然后利用opencv_createsamples.exe应用程序在该目录下使用如下cmd命令:

    

haartraining生成.xml文件过程_机器学习_09

     其中的-vec是指定后面输出vec文件的文件名,-info指定正样本描述文件,-bg指定负样本描述文件,-w和-h分别指正样本的宽和高,-num表示正样本的个数。执行完该命令后就会在当前目录下生产一个pos.vec文件了。

4.使用opencv_haartraining.exe文件进行训练

     首先在当前目录下新建一个xml文件夹用于存放生成的.xml文件。

     在当前目录使用cmd命令:

     Opcnv_haartraining.exe –data xml –vec pos.vec –bg neg_image.txt –nsplits 1 –sym –w 24 –h 24 –mode all –mem 1280

截图如下:

     

haartraining生成.xml文件过程_人脸检测_10

     其中-data为输出xml中间文件的位置,-sym表示训练的目标为垂直对称,-nsplits 1表示使用简单的stump classfier分类。-mem 1280 表示允许使用计算机的1280M内存,-mode all 表示使用haar特征集的种类既有垂直的,又有45度角旋转的。

     因为数据量不是很多,不到半个钟头就训练好了。在当前目录下生产了一个xml.xml文件,将其重名名为face_test.xml。

5.实验结果:

     利用上面训练出来的face_test.xml文件来检测下人脸,首先来一张比较正面的人脸图

     

     为了看看是否不是特别正的,且有背景干扰的结果,用了lena的图,检测结果如下:

     

haartraining生成.xml文件过程_人脸检测_11

 

 

​http://www.cnblogs.com/tornadomeet/archive/2012/03/22/2411318.html的代码类似,删减了人眼检测的代码而已,源码如下:​



haartraining生成.xml文件过程_人脸检测_12



1 // face_detect.cpp : 定义控制台应用程序的入口点。
2 //
3 #include "stdafx.h"
4
5 #include "opencv2/objdetect/objdetect.hpp"
6 #include "opencv2/highgui/highgui.hpp"
7 #include "opencv2/imgproc/imgproc.hpp"
8 #include "opencv2/ml/ml.hpp"
9
10 #include <iostream>
11 #include <stdio.h>
12
13 using namespace std;
14 using namespace cv;
15
16 void detectAndDraw( Mat& img,
17 CascadeClassifier& cascade,
18 double scale);
19
20 String cascadeName = "./face_test.xml";//人脸的训练数据
21
22 int main( int argc, const char** argv )
23 {
24 Mat image;
25 CascadeClassifier cascade, nestedCascade;//创建级联分类器对象
26 double scale = 1.3;
27 // image = imread("obama_gray.bmp",1);
28 image = imread("lena_gray.jpg",1);
29 namedWindow( "result", 1 );//opencv2.0以后用namedWindow函数会自动销毁窗口
30
31 if( !cascade.load( cascadeName ) )//从指定的文件目录中加载级联分类器
32 {
33 cerr << "ERROR: Could not load classifier cascade" << endl;
34 return 0;
35 }
36
37 if( !image.empty() )//读取图片数据不能为空
38 {
39 detectAndDraw( image, cascade, scale );
40 waitKey(0);
41 }
42
43 return 0;
44 }
45
46 void detectAndDraw( Mat& img,
47 CascadeClassifier& cascade,
48 double scale)
49 {
50 int i = 0;
51 double t = 0;
52 vector<Rect> faces;
53 const static Scalar colors[] = { CV_RGB(0,0,255),
54 CV_RGB(0,128,255),
55 CV_RGB(0,255,255),
56 CV_RGB(0,255,0),
57 CV_RGB(255,128,0),
58 CV_RGB(255,255,0),
59 CV_RGB(255,0,0),
60 CV_RGB(255,0,255)} ;//用不同的颜色表示不同的人脸
61
62 Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );//将图片缩小,加快检测速度
63
64 cvtColor( img, gray, CV_BGR2GRAY );//因为用的是类haar特征,所以都是基于灰度图像的,这里要转换成灰度图像
65 resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );//将尺寸缩小到1/scale,用线性插值
66 equalizeHist( smallImg, smallImg );//直方图均衡
67
68 t = (double)cvGetTickCount();//用来计算算法执行时间
69
70 //检测人脸
71 //detectMultiScale函数中smallImg表示的是要检测的输入图像为smallImg,faces表示检测到的人脸目标序列,1.1表示
72 //每次图像尺寸减小的比例为1.1,2表示每一个候选矩形需要记录2个邻居,CV_HAAR_SCALE_IMAGE表示使用haar特征,Size(30, 30)
73 //为目标的最小最大尺寸
74 cascade.detectMultiScale( smallImg, faces,
75 1.1, 2, 0
76 //|CV_HAAR_FIND_BIGGEST_OBJECT
77 //|CV_HAAR_DO_ROUGH_SEARCH
78 |CV_HAAR_SCALE_IMAGE
79 ,
80 Size(30, 30) );
81
82 t = (double)cvGetTickCount() - t;//相减为算法执行的时间
83 printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
84 for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
85 {
86 Mat smallImgROI;
87 vector<Rect> nestedObjects;
88 Point center;
89 Scalar color = colors[i%8];
90 int radius;
91 center.x = cvRound((r->x + r->width*0.5)*scale);//还原成原来的大小
92 center.y = cvRound((r->y + r->height*0.5)*scale);
93 radius = cvRound((r->width + r->height)*0.25*scale);
94 circle( img, center, radius, color, 3, 8, 0 );
95 smallImgROI = smallImg(*r);
96 }
97 cv::imshow( "result", img );
98 }



haartraining生成.xml文件过程_人脸检测_12



 

 

6.参考文献:

1. ​​http://hi.baidu.com/zdd007007/blog/item/b2e7f026eec9e23f8644f959.html​​ 的博客。

2. http://blog.csdn.net/guxj821/article/details/6341239

 

 

 


作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet