题目链接:​​http://acm.hdu.edu.cn/showproblem.php?pid=6198​​​
题意:给你一段斐波那契数列,有个关于good number的定义,就是给你一个k,如果对于一个n,能由k项斐波那契数相加来表示,那么这个数就叫good number,否则就是bad number,现在输入k,让你求最小的bad number
解析:这种题型,看着就像递推题,手写了前几项,然后和原本的菲波那切数比,只是其中的某一项-1,即第2*(k+1)+1项-1,由于k很多,所以用矩阵快速幂来求出这一项,有一个坑点就是-1以后有可能是负数,所以要在最后输出的时候判一下

#include <bits/stdc++.h>
using namespace std;
const int mod = 998244353;
typedef long long ll;
struct martix
{
ll a[4][4];
int n,m;
martix() {}
martix(int _n,int _m)
{
n = _n,m = _m;
memset(a,0,sizeof(a));
}
martix operator * (const martix &b)const
{
martix res(n,b.m);
for(int i=0;i<n;i++)
{
for(int j=0;j<b.m;j++)
{
for(int k=0;k<m;k++)
res.a[i][j] = (res.a[i][j]+a[i][k]*b.a[k][j]%mod)%mod;
}
}
return res;
}
void print()
{
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
printf("%I64d ",a[i][j]);
puts("");
}
}
};
martix qpow(martix x,int n)
{
martix res(x.n,x.n);
for(int i=0;i<x.n;i++)
res.a[i][i] = 1;
while(n)
{
if(n&1)
res = res*x;
x = x*x;
n >>= 1;
}
return res;
}
int main(void)
{
int n;
while(~scanf("%d",&n))
{
int tt = 2*(n+1);
martix op(2,2);
martix ans(2,1);
op.a[0][0] = 1;op.a[0][1] = 1;
op.a[1][0] = 1;op.a[1][1] = 0;
ans.a[0][0] = 1;ans.a[1][0] = 0;
op = qpow(op,tt);
ans = op*ans;
printf("%I64d\n",(ans.a[0][0]-1+mod)%mod);
}
return 0;
}