题目大意:给你N个数,要求你分成M个部分,每部分的得分为,假设该部分为i, j, k, 那么的分就为i * j + i * k + j * k
问划分后,至少能得多少分

解题思路:用dp[i][j]表死前j个数,分成了i个部分,所能得到的最小得分,则dp[i][j] = dp[i - 1][k] + w[k + 1][j]
w[k + 1][j]表示k+1个数到第j个数为一部分的得分
该式子满足四边形不等式(…具体现在我也不太懂,先mark)

#include <cstdio>
#include <cstring>
const int N = 1010;
typedef long long LL;
const LL INF = (1LL << 60);
LL dp[N][N], val[N][N], w[N][N], num[N];
int s[N][N];
int n, m;

void init() {
    for (int i = 1; i <= n; i++)
        scanf("%lld", &num[i]);

    for (int i = 1; i <= n; i++)
        val[i][i] = 0;

    for (int i = 1; i < n; i++)
        for (int j = i + 1; j <= n; j++)
            val[i][j] = val[i][j - 1] + num[i] * num[j];

    for (int i = n - 1; i >= 1; i--)
        for (int j = i + 1; j <= n; j++)
            w[i][j] = w[i + 1][j] + val[i][j];
}

void solve() {
    for (int i = 1; i <= n; i++) {
        dp[0][i] = w[1][i]; 
        s[0][i] = 0;
    }

    for (int i = 1; i <= m; i++) {
        s[i][n + 1] = n;
        for (int j = n; j > i; j--) {
            dp[i][j] = INF;
            for (int k = s[i-1][j] ; k <= s[i][j + 1]; k++) {
                if (dp[i][j] > dp[i - 1][k] + w[k + 1][j]) {
                    dp[i][j] = dp[i - 1][k] + w[k + 1][j];
                    s[i][j] = k;
                }
            }
        }
    }
    if (m >= n) dp[m][n] = 0;
    printf("%lld\n", dp[m][n]);
}

int main() {
    while (scanf("%d%d", &n, &m) != EOF && n + m) {
        init();
        solve();
    }
    return 0;
}