深度学习入门(六十六)循环神经网络——束搜索)

  • 前言
  • 循环神经网络——束搜索
  • 课件
  • 贪心搜索
  • 穷举搜索
  • 束搜索
  • 总结
  • 教材
  • 1 贪心搜索
  • 2 穷举搜索
  • 3 束搜索
  • 4 小结


前言

核心内容来自博客链接1博客连接2希望大家多多支持作者
本文记录用,防止遗忘

循环神经网络——束搜索

课件

贪心搜索

在seq2seq中我们使用了贪心搜索来预测序列

  • 将当前时刻预测概率最大的词输出

但贪心很可能不是最优的:

som神经网络原理 神经网络搜索_深度学习

穷举搜索

最优算法:对所有可能的序列,计算它的概率,然后选取最好的那个
如果输出字典大小为n,序列最长为T,那么我们需要考察nT个序列

  • n = 10000,T= 10: som神经网络原理 神经网络搜索_算法_02
  • 计算上不可行

束搜索

保存最好的k个候选

在每个时刻,对每个候选新加一项(n种可能),在kn个选项中选出最好的k个

som神经网络原理 神经网络搜索_深度学习_03


som神经网络原理 神经网络搜索_搜索_04

总结

束搜索在每次搜索时保存k个最好的候选

  • k =1时是贪心搜索
  • k = n时是穷举搜索

教材

在上一节中,我们逐个预测输出序列, 直到预测序列中出现特定的序列结束词元“<eos>”。 本节将首先介绍贪心搜索(greedy search)策略, 并探讨其存在的问题,然后对比其他替代策略: 穷举搜索(exhaustive search)束搜索(beam search)

在正式介绍贪心搜索之前,我们使用与上一节中 相同的数学符号定义搜索问题。 在任意时间步som神经网络原理 神经网络搜索_som神经网络原理_05,解码器输出som神经网络原理 神经网络搜索_som神经网络原理_06的概率取决于 时间步som神经网络原理 神经网络搜索_som神经网络原理_05之前的输出子序列som神经网络原理 神经网络搜索_深度学习_08 和对输入序列的信息进行编码得到的上下文变量som神经网络原理 神经网络搜索_rnn_09。 为了量化计算代价,用som神经网络原理 神经网络搜索_som神经网络原理_10表示输出词表, 其中包含“<eos>”, 所以这个词汇集合的基数som神经网络原理 神经网络搜索_som神经网络原理_11就是词表的大小。 我们还将输出序列的最大词元数指定为som神经网络原理 神经网络搜索_算法_12。 因此,我们的目标是从所有som神经网络原理 神经网络搜索_算法_13个 可能的输出序列中寻找理想的输出。 当然,对于所有输出序列,在“<eos>”之后的部分(非本句) 将在实际输出中丢弃。

1 贪心搜索

首先,让我们看看一个简单的策略:贪心搜索, 该策略已用于上一节的序列预测。 对于输出序列的每一时间步, 我们都将基于贪心搜索从中找到具有最高条件概率的词元,即:
som神经网络原理 神经网络搜索_rnn_14

一旦输出序列包含了“<eos>”或者达到其最大长度som神经网络原理 神经网络搜索_算法_12,则输出完成。

som神经网络原理 神经网络搜索_rnn_16


如图中, 假设输出中有四个词元“A”“B”“C”和“<eos>”。 每个时间步下的四个数字分别表示在该时间步 生成“A”“B”“C”和“<eos>”的条件概率。 在每个时间步,贪心搜索选择具有最高条件概率的词元。 因此,将在图中 预测输出序列“A”“B”“C”和“<eos>”。 这个输出序列的条件概率是 som神经网络原理 神经网络搜索_搜索_17

那么贪心搜索存在的问题是什么呢? 现实中,最优序列(optimal sequence)应该是最大化 som神经网络原理 神经网络搜索_搜索_18值的输出序列,这是基于输入序列生成输出序列的条件概率。 然而,贪心搜索无法保证得到最优序列。

som神经网络原理 神经网络搜索_搜索_19


上图中的另一个例子阐述了这个问题。 与前一张图不同,在时间步中, 我们选择图2中的词元“C”, 它具有第二高的条件概率。 由于时间步所基于的时间步和处的输出子序列已从 图1中的“A”和“B”改变为 图9.8.2中的“A”和“C”, 因此时间步处的每个词元的条件概率也在 图2中改变。 假设我们在时间步选择词元“B”, 于是当前的时间步基于前三个时间步的输出子序列“A”“C”和“B”为条件, 这与图1中的“A”“B”和“C”不同。 因此,在 图2中的时间步生成 每个词元的条件概率也不同于 图1中的条件概率。 结果, 图2中的输出序列 “A”“C”“B”和“<eos>”的条件概率为som神经网络原理 神经网络搜索_rnn_20 , 这大于 图1中的贪心搜索的条件概率。 这个例子说明:贪心搜索获得的输出序列 “A”“B”“C”和“<eos>” 不一定是最佳序列。

2 穷举搜索

如果目标是获得最优序列, 我们可以考虑使用穷举搜索(exhaustive search): 穷举地列举所有可能的输出序列及其条件概率, 然后计算输出条件概率最高的一个。

虽然我们可以使用穷举搜索来获得最优序列, 但其计算量som神经网络原理 神经网络搜索_算法_13可能高的惊人。 例如,当som神经网络原理 神经网络搜索_搜索_22som神经网络原理 神经网络搜索_搜索_23时, 我们需要评估som神经网络原理 神经网络搜索_rnn_24序列, 这是一个极大的数,现有的计算机几乎不可能计算它。 然而,贪心搜索的计算量som神经网络原理 神经网络搜索_深度学习_25,它要显著地小于穷举搜索。 例如,当som神经网络原理 神经网络搜索_搜索_22som神经网络原理 神经网络搜索_搜索_23时, 我们只需要评估som神经网络原理 神经网络搜索_搜索_28个序列。

3 束搜索

那么该选取哪种序列搜索策略呢? 如果精度最重要,则显然是穷举搜索。 如果计算成本最重要,则显然是贪心搜索。 而束搜索的实际应用则介于这两个极端之间。

束搜索(beam search)是贪心搜索的一个改进版本。 它有一个超参数,名为束宽(beam size)k。 在时间步1,我们选择具有最高条件概率的k个词元。 这k个词元将分别是k个候选输出序列的第一个词元。 在随后的每个时间步,基于上一时间步的k个候选输出序列, 我们将继续从som神经网络原理 神经网络搜索_算法_29个可能的选择中 挑出具有最高条件概率的k个候选输出序列。

som神经网络原理 神经网络搜索_算法_30

上图演示了束搜索的过程。 假设输出的词表只包含五个元素:som神经网络原理 神经网络搜索_som神经网络原理_31 , 其中有一个是“<eos>”。 设置束宽为2,输出序列的最大长度为3。 在时间步1,假设具有最高条件概率som神经网络原理 神经网络搜索_som神经网络原理_32的词元是A和C。 在时间步2,我们计算所有som神经网络原理 神经网络搜索_som神经网络原理_33为:
som神经网络原理 神经网络搜索_rnn_34

从这十个值中选择最大的两个, 比如som神经网络原理 神经网络搜索_算法_35som神经网络原理 神经网络搜索_搜索_36。 然后在时间步3,我们计算所有som神经网络原理 神经网络搜索_som神经网络原理_37为:

som神经网络原理 神经网络搜索_som神经网络原理_38

从这十个值中选择最大的两个, 即som神经网络原理 神经网络搜索_rnn_39som神经网络原理 神经网络搜索_搜索_40, 我们会得到六个候选输出序列: (1)A;(2)C;(3)A,B;(4)C,E;(5)A,B,D;(6)C,E,D。

最后,基于这六个序列(例如,丢弃包括“<eos>”和之后的部分), 我们获得最终候选输出序列集合。 然后我们选择其中条件概率乘积最高的序列作为输出序列:

som神经网络原理 神经网络搜索_算法_41

其中som神经网络原理 神经网络搜索_搜索_42是最终候选序列的长度, som神经网络原理 神经网络搜索_som神经网络原理_43通常设置为som神经网络原理 神经网络搜索_som神经网络原理_44。 因为一个较长的序列在上式的求和中会有更多的对数项, 因此分母中som神经网络原理 神经网络搜索_深度学习_45的用于惩罚长序列。

束搜索的计算量为som神经网络原理 神经网络搜索_rnn_46, 这个结果介于贪心搜索和穷举搜索之间。 实际上,贪心搜索可以看作一种束宽为1的特殊类型的束搜索。 通过灵活地选择束宽,束搜索可以在正确率和计算代价之间进行权衡。

4 小结

  • 序列搜索策略包括贪心搜索、穷举搜索和束搜索。
  • 贪心搜索所选取序列的计算量最小,但精度相对较低。
  • 穷举搜索所选取序列的精度最高,但计算量最大。
  • 束搜索通过灵活选择束宽,在正确率和计算代价之间进行权衡。