存储清洗后的数据

调优点:

  • coalesce(1)保证只有一个输出文件
  • mode(SaveMode.Overwrite)保证能够覆盖原有文件
package com.imooc.log

import org.apache.spark.sql.{SaveMode, SparkSession}

/**
 * 使用Spark完成我们的数据清洗操作
 */
object SparkStatCleanJob {

  def main(args: Array[String]) {
    val spark = SparkSession.builder().appName("SparkStatCleanJob")
      .config("spark.sql.parquet.compression.codec","gzip")
      .master("local[2]").getOrCreate()

//    val accessRDD = spark.sparkContext.textFile("/Users/rocky/data/imooc/access.log")
    val accessRDD = spark.sparkContext.textFile("./access.log")

    accessRDD.take(10).foreach(println)

    //RDD ==> DF的转换
    val accessDF = spark.createDataFrame(accessRDD.map(x => AccessConvertUtil.parseLog(x)),
      AccessConvertUtil.struct) //1

//    accessDF.printSchema()
//    accessDF.show(false)

    accessDF.coalesce(1).write.format("parquet").mode(SaveMode.Overwrite)
      .partitionBy("day").save("./clean2")

    spark.stop
  }
}


spark 清空mysql表 spark数据清洗实例_日志分析

需求一:TopN数据统计:最受欢迎的TopN课程

调优点:分区字段的数据类型调整
config("spark.sql.sources.partitionColumnTypeInference.enabled","false")

新建TopNStatJob.scala:

package com.imooc.log

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import org.apache.spark.sql.{DataFrame, SparkSession}

import scala.collection.mutable.ListBuffer

/**
 * TopN统计Spark作业
 */
object TopNStatJob {

  def main(args: Array[String]) {
    val spark = SparkSession.builder().appName("TopNStatJob")
      .config("spark.sql.sources.partitionColumnTypeInference.enabled","false") //分区字段的数据类型调整
      .master("local[2]").getOrCreate()

    val accessDF = spark.read.format("parquet").load("./clean2")

    accessDF.printSchema()
    accessDF.show(false)

    val day = "20170511"

//    StatDAO.deleteData(day)
//
//    //最受欢迎的TopN课程
    videoAccessTopNStat(spark, accessDF, day)
//
//    //按照地市进行统计TopN课程
//    cityAccessTopNStat(spark, accessDF, day)
//
//    //按照流量进行统计
//    videoTrafficsTopNStat(spark, accessDF, day)

    spark.stop()
  }

    /**
   * 最受欢迎的TopN课程
   */
  def videoAccessTopNStat(spark: SparkSession, accessDF:DataFrame, day:String): Unit = {

    /**
     * 使用DataFrame的方式进行统计
     */
    import spark.implicits._

    val videoAccessTopNDF = accessDF.filter($"day" === day && $"cmsType" === "video")//过滤出某一天的video类别的数据
    .groupBy("day","cmsId").agg(count("cmsId").as("times")) //1.要导入org.apache.spark.sql.functions._ 2.groupBy分组之后,要用agg聚合
    .orderBy($"times".desc)  //降序排列

    videoAccessTopNDF.show(false)

  }

}

运行结果:

spark 清空mysql表 spark数据清洗实例_spark 清空mysql表_02


统计结果入库

1.安装MySQL并建库

为了跟教程同步,于是在mac上面下载并安装了5.1.38版本的MySQL。
下载链接:https://cdn.mysql.com/archives/mysql-5.1/mysql-5.1.38-osx10.5-x86_64.tar.gz

安装步骤请参考:
1.
2.http://download.nust.na/pub6/mysql/doc/refman/5.1/en/installing-binary.html

安装好了之后,在命令行使用sudo ./mysql -u root -p进入MySQL

然后,在命令行建库,建库代码:create database imooc_project

然后执行use imooc_project

spark 清空mysql表 spark数据清洗实例_spark 清空mysql表_03

MySQLUtils.scala:

package com.imooc.log

import java.sql.{Connection, PreparedStatement, DriverManager}

/**
 * MySQL操作工具类
 */
object MySQLUtils {

  /**
   * 获取数据库连接
   */
  def getConnection() = {
    DriverManager.getConnection("jdbc:mysql://localhost:3306/imooc_project?user=root&password=")
  }

  /**
   * 释放数据库连接等资源
   * @param connection
   * @param pstmt
   */
  def release(connection: Connection, pstmt: PreparedStatement): Unit = {
    try {
      if (pstmt != null) {
        pstmt.close()
      }
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      if (connection != null) {
        connection.close()
      }
    }
  }

  def main(args: Array[String]) {
    println(getConnection())
  }

}

运行效果:

spark 清空mysql表 spark数据清洗实例_日志分析_04

2.在MySQL中建表

建表代码

create table day_video_access_topn_stat(
day varchar(8) not null,
cms_id bigint(10) not null,
times bigint(10) not null,
primary key (day, cms_id)
);


spark 清空mysql表 spark数据清洗实例_慕课网_05

3.创建实体类 DayCityVideoAccessStat.scala
package com.imooc.log

/**
 * 每天课程访问次数实体类
 */
case class DayVideoAccessStat(day: String, cmsId: Long, times: Long)
4.批量保存DayVideoAccessStat到数据库

调优点:执行批处理,将数据批量插入数据库,提交使用batch操作。
注意:要将默认的自动提交,设置为手动提交。

package com.imooc.log

import java.sql.{PreparedStatement, Connection}

import scala.collection.mutable.ListBuffer

/**
 * 各个维度统计的DAO操作
 */
object StatDAO {


  /**
    * 批量保存DayVideoAccessStat到数据库
    */
  def insertDayVideoAccessTopN(list: ListBuffer[DayVideoAccessStat]): Unit = {

    var connection: Connection = null
    var pstmt: PreparedStatement = null

    try {
      connection = MySQLUtils.getConnection()

      connection.setAutoCommit(false) //设置手动提交

      val sql = "insert into day_video_access_topn_stat(day,cms_id,times) values (?,?,?) "
      pstmt = connection.prepareStatement(sql)

      for (ele <- list) {
        pstmt.setString(1, ele.day)
        pstmt.setLong(2, ele.cmsId)
        pstmt.setLong(3, ele.times)

        pstmt.addBatch()
      }

      pstmt.executeBatch() // 执行批量处理
      connection.commit() //手工提交
    } catch {
      case e: Exception => e.printStackTrace()
    } finally {
      //      MySQLUtils.release(connection, pstmt)
    }
  }
}
5.将统计结果写入到MySQL中

回到TopNStatJob.scala,增加以下代码:

/**
     * 将统计结果写入到MySQL中
     */
    try {
      videoAccessTopNDF.foreachPartition(partitionOfRecords => {
        val list = new ListBuffer[DayVideoAccessStat] 

        partitionOfRecords.foreach(info => {
          val day = info.getAs[String]("day")
          val cmsId = info.getAs[Long]("cmsId")
          val times = info.getAs[Long]("times")

          /**
           * 不建议大家在此处进行数据库的数据插入
           */

          list.append(DayVideoAccessStat(day, cmsId, times))
        })

        StatDAO.insertDayVideoAccessTopN(list)
      })
    } catch {
      case e:Exception => e.printStackTrace()
    }
6.执行代码

右键执行TopNStatJob.scala

控制台输出:

spark 清空mysql表 spark数据清洗实例_spark_06


数据库中新增数据:

spark 清空mysql表 spark数据清洗实例_spark_07

至此,我们已在本地已完成需求一:统计最受欢迎的课程视频。


需求二::按照地市进行最受欢迎课程的统计

1.控制台打印统计数据

/**
   * 按照地市进行统计TopN课程
   */
  def cityAccessTopNStat(spark: SparkSession, accessDF:DataFrame, day:String): Unit = {
    import spark.implicits._

    val cityAccessTopNDF = accessDF.filter($"day" === day && $"cmsType" === "video")
      .groupBy("day", "city", "cmsId")
      .agg(count("cmsId").as("times"))

    cityAccessTopNDF.show(false)
  }

打印结果:

spark 清空mysql表 spark数据清洗实例_统计_08

2.在SparkSQL中使用window函数进行排序

def cityAccessTopNStat(spark: SparkSession, accessDF:DataFrame, day:String): Unit = {
    import spark.implicits._

    val cityAccessTopNDF = accessDF.filter($"day" === day && $"cmsType" === "video")
      .groupBy("day", "city", "cmsId")
      .agg(count("cmsId").as("times"))

    cityAccessTopNDF.show(false)


    //Window函数在Spark SQL的使用

    val top3DF = cityAccessTopNDF.select(
      cityAccessTopNDF("day"),
      cityAccessTopNDF("city"),
      cityAccessTopNDF("cmsId"),
      cityAccessTopNDF("times"),
      row_number().over(Window.partitionBy(cityAccessTopNDF("city"))
        .orderBy(cityAccessTopNDF("times").desc)
      ).as("times_rank")
    ).filter("times_rank <=3").show(false) //Top3
  }


spark 清空mysql表 spark数据清洗实例_spark_09

3.在MySQL中建表
建表代码:

create table day_video_city_access_topn_stat(
day varchar(8) not null,
cms_id bigint(10) not null,
city varchar(20) not null,
times bigint(10) not null,
times_rank int not null,
primary key (day, cms_id,city)
)ENGINE=InnoDB DEFAULT CHARSET=utf8;

建表结果:

spark 清空mysql表 spark数据清洗实例_慕课网_10

4.将统计结果写入到MySQL中

def cityAccessTopNStat(spark: SparkSession, accessDF:DataFrame, day:String): Unit = {
    import spark.implicits._

    val cityAccessTopNDF = accessDF.filter($"day" === day && $"cmsType" === "video")
    .groupBy("day","city","cmsId")
    .agg(count("cmsId").as("times"))

    cityAccessTopNDF.show(false)


    //Window函数在Spark SQL的使用

    val top3DF = cityAccessTopNDF.select(
      cityAccessTopNDF("day"),
      cityAccessTopNDF("city"),
      cityAccessTopNDF("cmsId"),
      cityAccessTopNDF("times"),
      row_number().over(Window.partitionBy(cityAccessTopNDF("city"))
      .orderBy(cityAccessTopNDF("times").desc)
      ).as("times_rank")
    ).filter("times_rank <=3")//.show(false)  //Top3


    /**
     * 将统计结果写入到MySQL中
     */
    try {
      top3DF.foreachPartition(partitionOfRecords => {
        val list = new ListBuffer[DayCityVideoAccessStat]

        partitionOfRecords.foreach(info => {
          val day = info.getAs[String]("day")
          val cmsId = info.getAs[Long]("cmsId")
          val city = info.getAs[String]("city")
          val times = info.getAs[Long]("times")
          val timesRank = info.getAs[Int]("times_rank")
          list.append(DayCityVideoAccessStat(day, cmsId, city, times, timesRank))
        })

        StatDAO.insertDayCityVideoAccessTopN(list)
      })
    } catch {
      case e:Exception => e.printStackTrace()
    }

  }

这里遇到一个坑:地址插入到MySQL中乱码,解决方法在此:错误解决:使用SparkSQL进行MySQL插入操作出现的中文乱码问题。

执行结果:

spark 清空mysql表 spark数据清洗实例_慕课网_11


需求三:按照流量进行最受欢迎课程的统计

  1. 建表
create table day_video_traffics_topn_stat(
day varchar(8) not null,
cms_id bigint(10) not null,
traffics bigint(20) not null,
primary key(day, cms_id));
  1. 代码实现
/**
   * 按照流量进行统计
   */
  def videoTrafficsTopNStat(spark: SparkSession, accessDF:DataFrame, day:String): Unit = {
    import spark.implicits._

    val cityAccessTopNDF = accessDF.filter($"day" === day && $"cmsType" === "video")
    .groupBy("day","cmsId").agg(sum("traffic").as("traffics"))
    .orderBy($"traffics".desc)
    //.show(false)

    /**
     * 将统计结果写入到MySQL中
     */

    try {
      cityAccessTopNDF.foreachPartition(partitionOfRecords => {
        val list = new ListBuffer[DayVideoTrafficsStat]

        partitionOfRecords.foreach(info => {
          val day = info.getAs[String]("day")
          val cmsId = info.getAs[Long]("cmsId")
          val traffics = info.getAs[Long]("traffics")
          list.append(DayVideoTrafficsStat(day, cmsId,traffics))
        })

        StatDAO.insertDayVideoTrafficsAccessTopN(list)
      })
    } catch {
      case e:Exception => e.printStackTrace()
    }

  }

运行效果:

spark 清空mysql表 spark数据清洗实例_统计_12


合并三个需求

1.为了实现数据覆盖的需求,StatDAO.scala中新增函数,用于删除指定日期的数据:

/**
   * 删除指定日期的数据
   */
  def deleteData(day: String): Unit = {

    val tables = Array("day_video_access_topn_stat",
      "day_video_city_access_topn_stat",
      "day_video_traffics_topn_stat")

    var connection:Connection = null
    var pstmt:PreparedStatement = null

    try{
      connection = MySQLUtils.getConnection()

      for(table <- tables) {
        // delete from table ....
        val deleteSQL = s"delete from $table where day = ?"
        pstmt = connection.prepareStatement(deleteSQL)
        pstmt.setString(1, day)
        pstmt.executeUpdate()
      }
    }catch {
      case e:Exception => e.printStackTrace()
    } finally {
      MySQLUtils.release(connection, pstmt)
    }


  }
}

2.在TopNStatJob.scala中的main函数中调用上述函数,并同时调用实现上述三个需求的函数

def main(args: Array[String]) {
    val spark = SparkSession.builder().appName("TopNStatJob")
      .config("spark.sql.sources.partitionColumnTypeInference.enabled","false") //分区字段的数据类型调整
      .master("local[2]").getOrCreate()

    val accessDF = spark.read.format("parquet").load("./clean2")

    accessDF.printSchema()
    accessDF.show(false)

    val day = "20170511"

    StatDAO.deleteData(day)
//
//    //最受欢迎的TopN课程
    videoAccessTopNStat(spark, accessDF, day)
//
//    //按照地市进行统计TopN课程
    cityAccessTopNStat(spark, accessDF, day)
//
//    //按照流量进行统计
    videoTrafficsTopNStat(spark, accessDF, day)

    spark.stop()
  }

运行结果:

spark 清空mysql表 spark数据清洗实例_统计_13