AIGC主要基于机器学习,尤其是深度学习领域,包括自然语言处理和计算机视觉技术等。这些技术通过模仿人脑的工作方式,使AI能够学习和模拟人类创作内容的行为。
- 在文本内容生成中,自然语言处理起着核心作用。这一过程通常涉及到预训练的语言模型,如生成预训练变换器(GPT)或双向编码器表示变换器(BERT)。这些模型通过大量的文本数据学习语言的语法规则、上下文关系和文字的多种用途。训练完成后,模型能够基于给定的输入(如单词、短语或句子)生成连贯、有意义的文本。
- 在图像内容生成中,计算机视觉技术发挥关键作用,尤其是利用生成对抗网络(GAN)。GAN由生成器和鉴别器组成。生成器试图创造出逼真的图像,而鉴别器则判断该图像是由生成器创造的还是真实的。这个过程在多次迭代中不断完善,最终生成器能够创作出难以被鉴别器区分的高质量图像。
- 音频和视频内容生成同样利用了深度学习技术,如循环神经网络(RNN)和卷积神经网络(CNN),来处理和生成时序性强的数据。在音频生成中,AI系统可以学习音乐的旋律、节奏及和声,然后创作出新的音乐作品。在视频生成中,AI则需要处理和理解视频帧之间的时间连续性,以及场景、动作和故事线的复杂性。
AIGC 的工作原理可以分为以下几个核心步骤:
- 数据收集和处理:搜集所需类型(文本、图像、音频、视频)的大量数据,并对其进行清洗、格式化和增强,以保证数据质量。
- 模型选择和训练:根据要生成的内容类型选择合适的AI模型(如文本用RNN/Transformer,图像用GAN),并用处理好的数据来训练模型,使其学会识别数据中的模式和结构。
- 特征学习和优化:在训练过程中,模型通过调整参数来学习数据的特征(比如语法、视觉元素),并使用优化算法(如梯度下降)来减小预测和真实数据之间的差异,不断迭代直到达到满意的性能水平。
- 内容生成和后处理:利用训练好的模型接收输入(种子文本、图像、音频样本等)生成新内容,并对这些内容进行后处理,比如调整文本的语法、提升图像质量、清晰度等。
- 反馈与模型优化:根据生成内容的反馈继续优化模型,以提高内容质量和逼真度。
大模型是基于海量多源数据打造的模型,是实现通用人工智能的重要路径。早期AIGC在文本生成领域开启内容创作落地,后期逐渐向图像、音视频等多模态领域扩展,跨模态内容生成也发展迅速,应用场景不断丰富。在大模型推动下AIGC有了更多的可能性,进入一个崭新的发展阶段。