医学图像_51CTO博客
摘要大多数现有的基于Transformer的网络架构用于视觉应用,但需要大规模数据集来正确训练。然而,与用于视觉应用的数据集相比,用于医学成像的数据样本数量相对较低,使得难以有效地训练用于医学应用的Transformer。为此,我们提出了一个门控轴向注意(Gated Axial-Attention)模型,该模型通过在自注意模块中引入额外的控制机制来扩展现有的体系结构。此外,为了在医学图像上有效地训
近日开始进入实验室搬砖,涉及医学图像这一块,之前没有接触,对内容进行一个梳理,帮助自己的理解,同时可能可以帮助其余有需要的人。1.医学影像学医学影像学(Medical Imaging)是研究借助于某种介质(比如X射线,电磁场,超声波等)和人体相互作用,把人体内部组织器官结构、密度以影像方式表示出来,供诊断医师根据影像提供的信息进行判断,从而对人体健康状况进行评价的一门科学,包括医学成像系统和医学
1 前言随着医学图像三维重建体绘制技术的发展及其研究的深入,医生对数据的分析不再局限于简单的观察输出结果,还要求能对结果进行友好交互,使最终结果更能满足其特定的观察需求。然而由于医学数据通常较大,对所有数据的重建和交互计算量非常大,目前能达到重建速度快、重建效果好、交互流畅的技术一般都是在专业的图形工作站上实现。但这些设备通常较为昂贵,一定程度上阻碍了三维重建体绘制技术在医学领域的普及。
一、什么是图像image?各种数字化表示的图片、图表以及照片的统称,是二维及以上的高维信息。二、图像的分类1.图像取值的不同:黑白图像(black and white image)/二值图像(binary image),灰度图像(gray level image)和彩色图像(color image)     黑白图像:指图像的每个像素只能是黑或者白,没有中间的过渡,故
1.X线检查X光检查:也叫拍片子,它有很强的穿透能力,检查时就像给身体拍了一张平面影像的照片。如果遇到被遮挡的部位,底片上不会曝光,但洗片后会呈现出白色。适用情况:X光是观察骨骼简便的检查方式,价格也相对较便宜。如果怀疑四肢、脊柱等部位出现急性外伤,伤到了骨骼,有突发急性疼痛或是难以控制的慢性疼痛,一般会优先选择X光。缺陷:X光检查只能提供平面影像,成像也容易受衣物、首饰甚至过厚的软组织影响,一般
医学图像进行数据增强(翻转、旋转)的方法总结使用深度学习执行图像分类任务时往往因为数据量不平衡或者数据量不足,需要进行数据增强,数据增强包括平移、旋转、裁剪、拉伸、缩放、水平翻转、垂直翻转、水平垂直、加噪声等等。而对于乳腺超声图像数据来说,拉伸、裁剪等操作会改变图像的形状信息,因此我使用水平翻转和旋转的方法进行数据扩充。一、水平翻转两种方法:分别是利用Opencv的DataAugment()函数、
基于GPU加速的医学图像融合分析-计算机应用技术专业论文摘要不同成像设备因其成像原理不同,所成图像也会各具特色。将多幅不同类型的医 学图像进行融合处理,可使各图像优势得到相互补充,图像信息得到全面利用,为临 床诊疗提供更加完善、全面、丰富的医学图像。无论是在医学研究还是临床应用方面,医学图像处理技术发挥的效力和影响力都 越来越大,这也促使我们对 CT 和 MRI 图像融合的速度要求越来越高,迫使我
作者:梦飞翔 编辑:学姐引自Unetr: Transformers for 3d medical image segmentation1.序言本文将以Nvidia团队最近提出的一种新的医学图像分割网络作为切入点,结合所用开源数据集,为各位同学提供一份从下载数据集到搭建网络训练医学任务的完整攻略,希望可以为各位医工交叉领域的同学提供一条捷径,力争少走弯路。2.开源数据集获取与使用本节将以论文作者使用
近年来,深度学习技术一直都处于科研界的前沿。凭借深度学习,我们开始对图像和视频进行分析,并将其应用于各种各样的设备,比如自动驾驶汽车、无人驾驶飞机,等等。 A Neural Algorithm of  Artistic  Style是一篇最新发表的研究性论文,论文向我们介绍了如何将一种风格和气质从艺术家身上转移至一张图像,并由此创建出另一张新图像。其他的一些论文,比如Gener
 单色图像的分割算法通常基于图像亮度值的两个基本特性:不连续性和相似性。在第一种类别中,处理方法是基于亮度的突变来分割一幅图像,如图像的边缘。在第二种类别中,主要方法是根据事先定义的准则把图像分割成相似的区域。今天小白介绍一下MATLAB中常用边缘检测的方法。掩膜的概念常用的点、线、边缘检测首先需要对检测的工具——掩模这一概念需要了解。拿3 x 3的掩模来说,该过程为计算系数和由掩模覆盖
在深度学习领域中常常存在着图像数量不够,或者图像种类不丰富等情况,这一点在医学图像处理中尤其常见,根据我个人经验,使用良好的图像增广(Augmentation)往往能达到事半功倍,甚至是起到决定性的效果。另外,随着半监督、无监督等算法的新起,对图像增广,以及图像relabel的各种算法也开始出现,有必要在这里讨论下一些奇怪但有效的图像增广方法。Sample pairing 增广方法来自于奇文Dat
# Python医学图像的实现流程 ## 1. 简介 在医学领域,图像处理是非常重要的一项技术。Python作为一种简单易用的编程语言,也可以用于医学图像的处理和分析。本文将介绍如何使用Python进行医学图像的处理。 ## 2. 实现步骤 下面是实现医学图像处理的一般步骤: | 步骤 | 描述 | | ---- | ---- | | 1. 安装必要的库 | 确保已经安装了所需的Pyth
原创 2023-09-16 13:19:35
301阅读
数据增广计算机视觉有七类分类问题: 不同的视角,不同的大小,物体的形变问题,物体的遮挡问题,光照条件,背景复杂的问题,每一类中有多种形态的问题。 而数据增广的思路也就是解决这个问题。数据增广如何增广就要从实际的问题出发,比如医学的图片基本上拍摄的时候视角是固定的,所以就不需要不同视角的增广。木纹检测中视角是不固定的,就需要不同的视角,不同的大小的增广,还需要应不同的光照条件对数
医学图像分割-----《医学图像处理与分析》第二版主要流程:医学图像分割概念、几种医学分割技术、图像分割常用的形态学运算和边界跟踪技术‘概念:根据某种均匀(一致)性的原则将图像分割成若干有意义的部分,使得每一部分都符合某种一致性的要求,而任意两个相邻部分的合并都会破坏这种一致性。可归结为图像像素点的分类问题。边缘检测技术:图像分割的重要手段:基于物体和背景之间在灰度(或纹理)特性上存在着某种不连续
一、问题描述最近在开发过程中遇到了这样的问题:在医学图像开发过程中,我们将医学图像通过深度学习算法进行分割,现在想要通过这一套二维图像进行三维重构。以下是分割结果: 以下是读取的遮罩mask: 如何将这些二维图像进行三维重建,是个棘手问题,笔者通过vtk进行建模操作。二、解决方案0. 写在前面医学图像的三维重建本身就是热点技术,这项技术也并非新鲜技术,笔者调研多份前者的博客与其余资料
Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation论文:https://arxiv.org/abs/2105.05537代码:https://github.com/HuCaoFighting/Swin-Unet首个基于纯Transformer的U-Net形的医学图像分割网络,其中利用Swin Transforme
AI引领医学影像革命!生成式AI技术助力医疗企业开发3D成像模型AI大模型在医学影像领域的赋能正成为医疗行业的热门话题。医疗巨头企业,如西门子医疗和GE医疗,正在积极探索AI大模型在医学影像中的潜在应用场景。这些尝试目前还处于早期阶段,但展现出了令人期待的前景。让我们一起来看看AI如何助力医学影像,并为医疗行业带来新的突破。近日,中国国际医疗器械博览会(CMEF)上引起了广泛关注的话题之一就是新型
虽然深度学习模型已经成为医学图像分割的主要方法,但它们通常无法推广到涉及新解剖结构、图像模态或标签的unseen分割任务。给定一个新的分割任务,研究人员通常必须训练或微调模型,这很耗时,并对临床研究人员构成了巨大障碍,因为他们往往缺乏训练神经网络的资源和知识。作者提出UniverSeg,这是一种在没有额外训练的情况下解决unseen医学分割任务的方法。给定新分割任务的"query图像-标签pair
这两天又重新回顾了一下医学图像数据的读取和预处理方法,在这里总结一下。基于深度学习做医学图像数据分析,例如病灶检测、肿瘤或者器官分割等任务,第一步就是要对数据有一个大概的认识。但是我刚刚入门医学图像分割的时候,很迷茫不知道自己该干啥,不知道需要准备哪些知识,慢慢到现在才建立了一个简陋的知识体系。个人认为,比如说医学图像分割这个方向,再具体一点比如腹部器官分割或者肝脏肿瘤分割,需要掌握两方面的知识:
五  医学图像增强   为了改善视觉效果或便于人或机器对图像的分析理解,根据图像的特点、存在的问题或应用目的等,所采取的改善图像质量的方法,或加强图像某些特征的措施称为图像增强(image enhancement)1.  直方图增强法常用的修改直方图的方法主要有:灰度变换和直方图增强。灰度变换又称为对比度扩展与调整,它是一种逐像素点对图像进行变换的增强方法,一般是通过
  • 1
  • 2
  • 3
  • 4
  • 5